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Introduction: 
 
This report provides an inspection comparison (i.e.: without performance data) of two 
different operating system (OS) abstraction layer software products. One is the Goddard 
Space Flight Center (GSFC) developed Operating System Abstraction Layer (OSAL), 
and the other is the Washington University, St. Louis developed Adaptive 
Communication Environment (ACE). 
 
The purpose of these abstraction layers is to support software development that is 
independent of the host operating system. It should be mentioned there are other aspects 
of an operating environment that hinder host independent development such as hardware 
specific devices and board level support. This support extends to include physical 
characteristics of the underlying hardware over which the software must operate. This 
report focuses on the operating system aspects of an abstraction layer. In other words, 
those layers releasing the developer from working with the likely vagaries of a specific 
operating system. For reference, there are hardware device level abstractions available 
such as the Abstract Device Model (ADM) developed for X2000, and to a lesser extent 
portions of the Goddard developed OSAL1 referenced in this report. 

The operating system facilities such as task management, semaphores, and inter-process 
communication are emphasized in this report. As abstraction layers, both ACE and OSAL 
provide APIs that support application development without making direct calls to the 
underlying operating system. In order to achieve the benefits (such as portability) from 
using an operating system abstraction layer, it is extremely important to require all 
higher-level development use the abstractions and not develop to the underlying 
operating system calls. 

This report provides a brief overview of each product followed by a more detailed 
comparison that focuses on the differences between ACE and OSAL implementations. As 
stated earlier, this report is a visual comparison of the products. If desired and with 
additional time, performance measurements can be collected and reported. One possible 
approach for these measurements is to retool the VML component evaluation (task 
completed last month) from using ACE to OSAL. 
 
Lastly, the ease of using either product cannot be completely understood or evaluated 
without spending sufficient development time working with each product. At the end, a 
brief conclusion and opinion is provided. 

                                                 
1  The Goddard OSAL library contains both hardware and operating system abstraction layers. This report 
focuses on the operating system portions of the OSAL library. A portion of the hardware abstraction 
dealing with processor specific type information (e.g.: 16-bit integer) is mentioned in this report. 



ACE Introduction: 
 
ACE is a freely available, object-oriented framework that implements many core design 
patterns for multi-threaded software applications. Originally developed as a university 
based research and development effort, ACE is implemented in C++ and provides 
support for many operating system platforms. These platforms include both Wind River 
VxWorks and Sun Solaris (supporting both POSIX and Solaris thread models), both of 
which are required platforms for MSAP. Additional platforms include Mac OS X, Linux 
(Unix/POSIX in general), and Microsoft Windows. 
 
ACE is comprised of four functional layers. Namely, these layers are the OS adapter, 
C++ wrapper facades, frameworks, and distributed services. The primary goal for ACE is 
to support common middleware services and reusable design patters that are largely 
independent of OS (and language to some extent). Accomplishing this goal requires 
abstracting the operating system from intermediate layers. This report focuses on the OS 
adapter layer that resides directly above the native APIs of the target operating system 
and provides the closest comparison (call-wise) to the GSFC OSAL implementation. 
 
The ACE OS adapter layer encapsulates APIs for multi-threading, thread 
synchronization, inter-process communication, shared memory, event distribution, etc. In 
short, it focuses on providing the multi-thread support functions of the abstraction layer. 
 
For compilation, ACE makes use of conditional compilation. The lowest levels of ACE 
rely on preprocessor defined variables to determine which portions of the software to 
compile. This method minimizes much of the common code duplication across source 
files, but can often leads to untidy source files as more conditional variables are added. 
Also, the ACE code contains frequently nested conditional compilation statements that 
can become eye straining. The following ACE code fragment shows a simple example of 
nested variables. This example demonstrates a nested VxWorks definition within an 
ACE_HAS_THREADS definition. 
 
 
 

int 
ACE_OS::cond_destroy(ACE_cond_t *cv) 
{ 
  ACE_OS_TRACE ("ACE_OS::cond_destroy"); 
# if defined (ACE_HAS_THREADS) 
#   if defined (ACE_HAS_WTHREADS) 
  ACE_OS::event_destroy (&cv->waiters_done_); 
#   elif defined (VXWORKS) || defined (ACE_PSOS) 
  ACE_OS::sema_destroy (&cv->waiters_done_); 
#   endif /* VXWORKS */ 
  ACE_OS::thread_mutex_destroy (&cv->waiters_lock_); 
  return ACE_OS::sema_destroy (&cv->sema_); 
# else 
  ACE_UNUSED_ARG (cv); 
  ACE_NOTSUP_RETURN (-1); 
# endif /* ACE_HAS_THREADS */ 
} 



 
 
OSAL Introduction: 
 
OSAL is available as a GSFC open source software product downloadable and controlled 
under the terms of the NASA Open Source Agreement (NOSA). A copy of the NOSA is 
available from https://opensource.gfsc.nasa.gov/nosa.php. 
 
OSAL is a thin library, developed in C, which isolates embedded software from the 
underlying real-time operating system. It provides an abstraction layer to both the 
hardware and the host operating system. The primary goal of OSAL is to allow the 
development of portable system software that is independent of a particular real-time 
operating system. 
 
OSAL provides an implementation for Wind River VxWorks. However, there is no 
documented support for a Solaris workstation environment. The complete list of 
supported operating systems include RTEMS, VxWorks, Mac OS X, and Linux. The 
Linux implementation uses POSIX, so it may be relatively simple to derive Solaris 
support from their Linux baseline. The OSAL source code tree is comprised of branches, 
or subdirectories, for each supported operating system. A pre-build configuration file is 
tailored to specify to desired operating system target. When compiled, the directories (see 
Figure 1) containing the specific operating system source code files are compiled. 
 
The OSAL source code tree separates common code from hardware architecture and 
operating system specific code. Figure 1 - OSAL Source Code Tree contains a diagram of 
the OSAL build directory structure. All operating system specific code is maintained 
within a separate directory for each supported operating system. There are no pre 
processor conditional compilation directives used. Root level configuration files are used 
to determine which portions of the directory structure to incorporate into a library build. 
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Figure 1 - OSAL Source Code Tree 

 
Porting software to support additional platforms is handled by extending the directory 
structure to accommodate the new target. The benefit to this layout is that code is 
completely isolated for each specific hardware and software target. The drawback is that 
there can be a significant amount of code duplication within each of the target directories. 
Any source code file that contains both common and OS specific code is maintained in its 
own directory. 



The Comparison: 
 
The comparison emphasizes the differences between ACE and OSAL focusing on the 
areas of task control, message queues, and thread synchronization. These three areas 
represent the majority of OSAL. As mentioned earlier, ACE provides higher levels of 
abstraction (middleware services and design patterns), but these are only briefly 
mentioned in this report since there are no OSAL equivalents.  
 
Task Control: 
 
The OSAL task control APIs are implemented as a very thin layer above the operating 
system specific task control calls. A compile time parameter is used to encode the 
maximum number of allowed threads. This parameter is checked each time a new thread 
is created with an error returned when the maximum number of new threads is exceeded. 
 
After checking the maximum number of allowed threads, OSAL invokes the native 
operating system thread spawn call before returning a status. Appendix A contains a code 
listing of the OSAL VxWorks thread create function. One thing to notice is that the 
calling parameters map directly (by meaning and type) to the native operating system 
call. 
 
By comparison, the ACE APIs provide multiple layers of abstraction and also introduce 
abstraction into the calling parameters. In some cases, the calling parameters are other 
ACE objects. Using ACE objects as parameters adds a degree of type safety into the 
programming. For example, ids for thread identification can be typed objects with 
specific behavior and used only as intended and not mixed with other parameters. The 
programmer cannot pass/use a thread id as a semaphore id for example. 
 
One other thing to notice is the OSAL call passes the thread priority directly to the 
underlying operating system call. One aspect I was not able to verify is how ACE 
interprets thread priorities. In any case, I believe operating system attributes whose values 
result in different behavior across different operating systems must be part of the 
abstraction. For example, the abstraction should define the range of supported priorities 
and runtime calculate the equivalent priority for each supported operating system. 
 
Both OSAL and ACE provide calls to manage thread behavior once they have been 
created. This includes functions such as thread delay, change priority, etc.  
 
Message Queues: (Comments in this area are still being compiled. ACE/OSAL Queue 
Create, Get, Put). 
 
Thread Synchronization: 
 
In much the same way OSAL supports threads, OSAL provides a single level of 
abstraction supporting both semaphores and mutexes. A compile time parameter is used 
to define the maximum number of allowed semaphores and mutexes. At runtime, this 



parameter is checked and an error is returned if the maximum number of semaphores and 
mutexes is exceeded. Appendix B4 contains a listing the OSAL supported semaphore and 
mutex API calls. For its VxWorks implementation, OSAL uses the mutual exclusion 
semaphore library (semMLib) and the binary semaphore library (semBLib). There is no 
support for counting or shared memory type semaphores. 
 
By comparison, ACE provides a set of lock classes that provide thread synchronization 
objects. Portions of these classes offer mutex, thread mutex, and process mutex support 
providing a simple and efficient mechanism that serializes access to shared resources 
(such as a file or object in shared memory). These methods encapsulate native Solaris, 
and POSIX operating system calls. Other lock classes offer semaphore, thread 
semaphore, and process semaphore support providing a general mechanism for 
serializing multiple threads of control. ACE supports counting and condition variable 
semaphores, as well as recursive and non-recursive locks. 
 
One feature I found very helpful was ACE Guards. When developing, it is easy for 
programmers to forget to make mutex unlock calls. This can starve other threads that are 
trying to acquire a lock. Furthermore, deadlocks will occur if the owner tries to reacquire 
a lock it already owns. The ACE mutex abstraction, called Guards, ensures locks are 
automatically released using the semantics of C++ constructors and destructors. The code 
placement of the Guard, at the beginning of a critical section, will invoke a constructor 
acquiring the initial lock. Equally, the destructor of a Guard automatically releases the 
lock when the Guard goes out of scope.  This model improves code correctness by 
automating the initialization of locks using C++ classes. They also guarantee that locks 
are released automatically. 
 
 



Conclusion: 
 
In conclusion, the differences between the OSAL and ACE build environments are 
usually not a tradeoff factor since both code baselines are externally maintained. The 
differences start becoming important once a project decides to maintain either of these 
code baselines internal to the project. Using OSAL would potentially require changes to 
support a Solaris workstation environment. 
 
This report focused on thread control, message queues, and thread synchronization. This 
represents a very small fraction and a different objective for ACE and what ACE 
provides. ACE supports a variety of data structures and functional categories. These 
categories include containers, configuration, message queues, connectors, and others. 
 
The primary goals for ACE and OSAL are very different. ACE was developed to address 
middleware services and design patterns independent of operating system and 
development language (but still object oriented). Maybe not intentional, but a 
consequence of this goal was the ACE OS abstraction layer. On the other hand, OSAL 
was developed to provide a lightweight single level of coding abstraction over the native 
operating system. 
 
A selection decision involves tradeoffs. For example, one may welcome the simple and 
very lightweight interface OSAL offers. On the other hand, one may decide to accept 
more complicated interfaces in return for additional value added functionality, and 
safeguards. You also cannot ignore implementation language differences. Most 
programmers perform development in a single language. This is not to say one language 
is better than another, but code mixing C functions with C++ objects can be distracting. 
 
From my analysis, OSAL does not perform any dynamic memory allocation. On the 
other hand, there are portions of the ACE layer that perform runtime memory allocation. 
However, I have not examined if these memory allocations are associated with the lowest 
ACE OS abstraction level. 
 
In my opinion, the benefits ACE offers are best gained in a C++ programming 
environment that can take advantage of the object-oriented programming techniques and 
safeguards to help develop better code. This advantage comes in terms of reliability, 
maintainability, etc. There is very little benefit in writing C wrappers around a handful of 
ACE classes. This would result in a simpler calling interface much like what OSAL 
already provides, but it would also leave overhead from several untapped ACE features. 
 
In my opinion, there are currently not enough benefits to using OSAL as a product 
library. For us, a better approach might be to develop our own abstraction layer using 
OSAL (and code from other JPL missions such as MER) for some initial ideas. Within a 
few weeks, we would be in a much better position than trying to incorporate OSAL into 
our development requirements. 
 
One last thing to mention, both ACE and OSAL provide type definitions for hardware 
specific data sizes. For example, an unsigned integer is typed as uint32 in OSAL. We also 



need to define these types in our TBD abstraction layer. In addition to the operating 
system abstraction layer, there is other common software functional areas to consider 
such as logging, debug tracing, and code instrumentation. These functional areas 
represent frequently used code that is called by higher-level modules. 
 
My recommendation is to include an additional analysis of the MER OS abstractions and 
make a follow-up recommendation for MSAP. 
 
Points of Contact: 
 
OSAL 
Alan Cudmore 
NASA Goddard Space Flight Center 
Code 582.0 
Greenbelt, MD 20771 
Alan.P.Cudmore@nasa.gov 
 
ACE 
University of Washington 
Sat Louis, MO. 63130-4899 
http://www.cs.wustl.edu/~schmidt/ACE.html 



Appendix A: OSAL Task Create Function 
 
 
 

uint32 OS_TaskCreate (uint16  task_id,  
                       char   *task_name, 
                       void   *function_pointer, 
                       uint32 *stack_pointer,  

    uint32  stack_size,  
                           uint32  priority,  
                       uint32  flags) 

{ 
 
      /* Check Parameters */ 
      if( (task_id > OS_MAX_TASKS) || 
          (OS_task_table[task_id] != 0) ) 
      { 
          return OS_ERROR; 
      } 
 
      /* Create VxWorks Task */ 
      OS_task_table[task_id] = taskSpawn(task_name, priority, 

flags, stack_size, (FUNCPTR)function_pointer, 
0,0,0,0,0,0,0,0,0,0); 

 
if(OS_task_table[task_id] == ERROR) 

      { 
          return OS_ERROR; 
      } 
 
      return OS_SUCCESS; 

} 



Appendix B: OSAL API List 
 
B1. Miscellaneous APIs: 

OS_InfoGetResetType 
OS_InfoGetProcessorId 
OS_InfoGetTaskID 
OS_InfoGetTicks 
OS_InfoGetEnvironment 
OS_InfoGetNetworkID 

 
B2. Task Control APIs: 

OS_TaskCreate 
OS_TaskDelay 
OS_TaskSetPriority 
OS_TaskRegister 
OS_IncExecCount 
OS_GetExecCount 

 
B3. Queue APIs: 

OS_QueueCreate 
OS_QueueGet 
OS_QueuePut 

 
B4. Semaphore and Mutex APIs: 

OS_BinSemCreate 
OS_BinSemGive 
OS_BinSemTake 
OS_BinSemTimedWait 
OS_MutSemCreate 
OS_MutSemGive 
OS_MutSemTake 

 


