Compliance Matrices, Tailoring, and Waivers
CLARAty – SDR (Rev. 5) Compliance Matrix

Compliance Legend:

	SDR Section Number
	Software Development Requirement (SDR)
	Doc. Section
	Compliance Status
	Comments or Notes;

Rationale if Compliance Status is not “C”

	1.0
	Who Must Comply With These Requirements
These requirements apply to all JPL employees and contractors, and all organizations (project and line) developing or acquiring software or firmware, or integrating software subsystems, for NASA and reimbursable efforts within the Develop New Products (DNP) domain. Development and maintenance of programmable logic devices is governed by Develop Hardware Products (JPL Rules! DocID 57752). For firmware, such as EPROMS, this document should be followed. Non-compliance with these requirements requires a Class 4 waiver (Category A Waiver Request/Approval, Rev. 2, JPL Rules! Doc ID 15032). These requirements apply to all phases of the software development life-cycle from initial concept through implementation and operations to task termination and/or software retirement.
	
	
	

	1.1
	All software to be developed, acquired, or incorporated into JPL-accountable products shall be classified by the Project Manager or Task Manager as: A) human-rated; B) mission-critical; C) mission support; or D) development support and technology, as defined in Section 1.4.
	
	N/A
	

	1.2
	Software classified as human-rated or mission-critical shall comply with these requirements.
	
	N/A
	

	1.3
	Software classified as mission support shall comply with these requirements tailoring the requirements to the level of risk using Class C Tailoring Instructions.
	
	N/A
	

	
	Note: Waivers are not required when mission support software is tailored according to the Class C Tailoring Instructions. However, waivers are required for non-compliance deviations not provided for in the tailoring instructions.
	
	
	

	1.4
	JPL Software Classifications:

Human-Rated (Class A): Space flight software subsystems (ground and flight) that supports human activity in space and that interacts with NASA human space flight systems.

Mission-Critical (Class B): Flight and ground software that must perform correctly and reliably in order to accomplish primary mission objectives. Examples of Class B software for non-human (robotic) space flight include but are not limited to propulsion systems; power systems; guidance navigation and control; fault protection; thermal systems; command and control ground systems; planetary surface operations; hazard prevention; primary instruments; or other subsystems that could cause the loss of science return from multiple instruments.
Mission Support (Class C): Flight and ground software which contributes to mission objectives, but whose correct functioning is not essential to the accomplishment of primary mission objectives. Examples of Class C software include software that supports trajectory design, predict generation, pre-launch integration and test tools, software used in trend analysis and calibration of flight engineering parameters, non-real time science data processing or software employed by the Network Operations and Control Center (which is redundant with systems used at the tracking complexes). High fidelity simulations and other software essential to validation (such as spacecraft dynamic models) are defined as mission support.

Development Support and Technology (Class D): Software that has no potential for impact to primary or secondary mission objectives. Examples are software developed to meet a research objective or support individual engineering efforts.
	
	N/A
	

	
	Note: Software origin should not be a consideration in classification. Inherited software, acquired software, scripts, or Off-The-Shelf software should be classified according to the underlying class criteria. (Off-The-Shelf software includes Commercial Off-The-Shelf [COTS] software, Government Off-The-Shelf [GOTS] software, Modified Off-The-Shelf (MOTS) software, and open source software.)

If special circumstances apply, waivers should be obtained or appropriate tailoring performed. For example, if COTS software provides a critical function, waivers should be secured with justification including substitute approaches such as plans for demonstration of software quality or review of software pedigree. If the development task consists of maintenance and/or extension of inherited software, activities performed in the initial creation of that software may be referenced rather than repeated.

For software embedded in hardware, this document should be used for the development of software content. Software development extends to applying general programming logic to a memory device or memory areas in a processor. This document does not cover associated hardware design.
	
	
	

	2.0
	Software Management Requirements
	
	
	

	
	Note: Reference material describing the relationships between Software Management Activities, Software Product Engineering Activities and Software Verification Activities is provided in “Software Management Overview” (JPL Rules! DocID 59952).
	
	
	

	2.1
	Software Management and Development Planning
	
	
	

	2.1.1
	A software plan shall be established and maintained as a basis for managing a software development.
	pro-
cedure
	Y
	

	
	Note: The software management plan should be written in a fashion to communicate a shared vision among key stakeholders. This shared vision should be refined and articulated throughout the development process.
	
	
	

	2.1.2
	The software plan shall be developed in accord with any higher-level plan.
	
	?
	Plan not in “plan form”. Lots of web based procedures which are valuable, but hard to tell compliance and find all bits of information.

	2.1.3
	The software plan shall address all pertinent requirements in this document. The software plan shall include:
	
	
	

	2.1.3 a
	Brief functional characterization of the product and identification of project software life-cycle phases, milestones, and deliverables.
	5.1.5
	Partial
	You have to have all this, but only technical plan explicitly described.

	2.1.3 b
	A work breakdown structure based on the plan for organizing and managing the development and consistent with any higher-level work breakdown structure.
	
	N
	You have to have this.

	2.1.3 c
	Identification of goals and assignment of responsibilities to participants.
	4.0
	Y
	

	2.1.3 d
	Identification and classification of software covered by the plan.
	1.0
	Y
	

	2.1.3 e
	Technical approach to the following activities:
	
	
	

	
	Note: Formulated to comply with “Design, Verification/Validation and Operations Principles for Flight Systems” (JPL Rules DocID-43913).
	
	
	

	2.1.3 e 1
	Articulation and elaboration of requirements.
	5.1, 5.2,5.7
	Y
	

	2.1.3 e 2
	Design and implementation of the product, including acquisition and secure operation of the development environment.
	
	N
	You have to be doing something.

	2.1.3 e 3
	Adaptation of inherited software, including the verification of functionality and the definition of necessary modifications
	5.1.2, 9.0
	Y
	

	2.1.3 e 4
	Identification of work products to be verified and verification methods to be used.
	
	N
	You must have this. May not be doing everything you should be.

	
	Note: Documents should be verified through detailed walkthroughs by groups of affected stakeholders. Source code should be subject to both detailed walkthroughs and more objective approaches – including unit testing and tool-based analysis.
	
	
	

	2.1.3 e 5
	Assurance that flight software complies with “Design, Verification/Validation and Operations Principles for Flight Systems” (JPL Rules DocID-43913).
	
	N
	Actually need to look at Design Principle to see what you are doing. Could be few or no changes needed.

	2.1.3 e 6
	Integration and test, including design, acquisition, and validation of test environment.
	
	N
	Not sure if you do anything to your test bed. You must design.

	
	Note: Integration testing should include verification that all requirements are met and that representative scenarios can be handled correctly.
	
	
	

	2.1.3 e 7
	Review of the intermediate work products, including detailed technical review.
	
	N
	Need to capture what work products makes sense for CLARAty.

	2.1.3 e 8
	Delivery and operations support.
	7.0
	Partial
	Delivery covered, but not operations support.

	2.1.3 e 9
	Configuration management of build process, code, documentation, and other work products.
	8.3 link
	Partial
	Policy for Repository Changes has discussion for code, but no discussion of work products.

	2.1.3 e 10
	Management of security and privacy.
	
	?
	You must be following the rules or the security screeners would have sent you heaps of non-compliance notices.

	
	Note: Software security and privacy approach should comply with JPL Information Technology Security Requirements for Computer Systems (D-7155), Rev. 7 (JPL Rules! DocID 36852).

It is recommended that prototyping be used early in a project to:
· Get an early start on the design of difficult functions.
· Establish team-to-team interfaces and stabilize the development process.
· Permit early validation of interfaces, high-risk algorithms, and Off-The-Shelf products.
Early implementation and validation of both the development environment and the required test facilities, including simulation, is recommended.
Implementation planning should outline the approach to the development and implementation of design rules and coding standards, including naming and versioning.
	
	
	

	2.1.3 e 11
	Process planning and process adherence review.
	6.2.4
	Partial
	Process planning mentioned, but no discussion of adherence review.

	2.1.3 f
	Software acquisition plans, including management and oversight of contractor’s development activities, if applicable.
	5.1.4
	Y
	

	
	Note: Acquisition plans should include identification of acquisition type (e.g., COTS, competitive bid contract, sole source contract, directed procurement) for each product to be acquired.

Candidate procurements, including COTS acquired from a software supplier, should satisfy identified software requirements.
	
	
	

	2.1.3 g
	Project organization, staffing, and identification of roles and responsibilities.
	4.0
	Partial
	Could easily updated, see SMP tool section.

	
	Note: The staffing plan should provide for filling key software roles early in the project or task life-cycle and provide for retention of a cadre of experienced development and test personnel through delivery and operations.

Software roles and relationships should be defined, including assignment of responsibility for monitoring and assuring software plan compliance.

The staffing plan should address the scope, content, and funding of training to be provided to developers, testers, users, and maintainers. Additionally, software developers should be briefed on system structure and project goals.

To ensure that designers and programmers will be able to apply their effort effectively, the software architecture and design rules should be documented before staffing up the implementation team.
	
	
	

	2.1.3 h
	Approach to managing the software development risk in accord with the project’s implementation of the institutional risk management process.
	
	N
	Risk not mentioned anywhere

	2.1.3 i
	An implementation schedule at a level of detail that facilitates tracking the progress.
	5.1.5, 6.1.1
	Y
	

	
	Note: It is useful to organize software development activities into groups of related activities, called phases, with entry and exit criteria for each phase, identified phase outputs, and verification activities at the end of each phase – e.g., reviews, demonstrations, tests.

Interdependencies among major activities should be negotiated, captured, and maintained in a network schedule or equivalent, with the critical path indicated.

Concurrent development of interfacing hardware and software should be jointly planned and coordinated, including joint preparation of integrated test plans. Hardware and software teaming should begin early in the development cycle. (Reference “NASA Lesson Learned” #590.)

The development of complex software products should employ an incremental and/or iterative approach to implementing and testing system components.

Schedule margin should be consistent with budget reserve. The process for deployment of budget and schedule reserves should be documented.
	
	
	

	2.1.3 j
	A budget consistent with the approach to risk management.
	5.1.7
	Partial
	Financial plan done, but no mention of risk.

	2.1.3 k
	Approach to the development, review, approval, release, revision, and control of documentation, with attention to the release and revision of preliminary versions (drafts), in accord with the JPL “Document and Data Control” Requirement (JPL Rules! DocID 57034).
	
	N
	Not sure you are controlling documentation.

	2.1.3 l
	Documents applicable to the software plan shall be identified and the relationships defined.
	
	N
	Do it once, and you are done.

	
	Note: A document tree or equivalent should be used to depict the levels and relationships of documents.
	
	
	

	2.1.3 m
	Identification of controlled records, associated procedures, and retention times, in accord with the “Records Management” Requirement (JPL Rules! DocID-56572).
	
	N
	Do it once, and you are done.

	2.1.3 n
	Provision for the identification and protection of intellectual property that is created or used during the course of development.
	6.1.4
	Y
	

	2.1.3 o
	Approach to monitoring development progress, utilizing product and process metrics.
	
	N
	You have to be doing something with product metrics, but probably need to think about process metrics.

	2.1.3 p
	Establishment of a process for initiating and conducting analyses in support of key technical decisions.
	
	N
	You probably have an informal process.

	
	Note: During planning and through development, issues requiring a formal evaluation process should be identified. Evaluations should include consideration of alternative solutions and selection based upon established criteria and methods.
	
	
	

	2.1.4
	For every software development, there shall be an individual responsible for the planning and management of the development activities and an individual responsible for leading the design activity (a software architect). One individual may occupy both roles.
	4.0
	Y
	Cog E

	
	Note: Early in the design phase, a project should establish the role of software architect, who has the authority for developing and communicating a vision of the structure and function of the software system and its relationship to other systems. The software architect is also responsible for formulating the design and implementation philosophy, as described in the development plan, and for communicating this philosophy to developers, system engineers, and integration and test personnel.
	
	
	

	2.1.5
	Written commitments from all groups responsible for contributing to the delivery of the products shall be established and maintained – including the JPL line organization, partners, and subcontractors.
	5.3
	Partial
	subcontractors explicit, WAs probably contain rest. Not sure about developer commitment.

	
	Note: Written commitments may take a variety of forms, e.g., Work Authorizations, Memorandums of Understanding, Contracts, and Signature on document.
	
	
	

	2.1.6
	The software plan shall define receivables and deliverables internal to the project, establish points-of-contact on both sides of an organizational interface, identify roles and responsibilities of key stakeholders throughout the life-cycle, and provide for regular meetings to ensure that the activities of interdependent groups are coordinated and reflect budget and schedule commitments.
	5.1.6
	Partial
	Receivables?

	2.1.7
	The software plan shall be reviewed and concurred with by line and project or task management to establish the feasibility of the plan and secure a commitment to provide the required staffing, facilities, and other resources.
	
	N
	You are probably doing it, but web based

	
	Note: To secure buy-in and verify content, it is important that the development staff (including software quality management staff) review the software plan prior to formal review by management. Software quality management staff should sign the software plan with a statement of any reservations, if applicable.
	
	
	

	2.1.8
	Adherence to the software plan shall be reviewed at major milestones, and revised as appropriate.
	
	N
	Easy to do.

	
	Note: The software plan should be revised when the development is determined or projected to be out-of-plan, or when external events change the basis for the plan. Estimation of the cost-to- complete the committed deliveries should accompany an updated plan. Criteria that often trigger a plan revision include:
· Significant changes in scope, schedule, or budget
· Delay in receipt of an externally supplied component or service
· Inability to meet a significant development milestone.
	
	
	

	2.2
	Software Cost Estimation
	
	
	

	2.2.1
	A documented cost estimate shall be prepared, addressing major sources of risk and uncertainty.
	5.1.7
	Partial
	risk and uncertainty?

	2.2.2
	Software cost documentation shall include:
	
	
	

	2.2.2 a
	Basis of estimate
	
	N
	in WA? Do you have a “formal” method for doing your estimates?

	
	Note: Inputs to the basis of estimates include support functions, procurements, size, complexity, number of interfaces, relevant cost data from JPL experience, and maturity of the doing organization. These data should be maintained for institutional use.
	
	
	

	2.2.2 b
	Assumptions
	
	N
	in WA?

	2.2.2 c
	Description of the cost estimation methodology used.
	
	N
	Maybe difficult to capture what you really do.

	
	Note: It is recommended that two cost estimates be prepared (Reference Software Cost Estimation Handbook, JPL Rules! DocID 62332):

· A bottom-up cost estimate based on a comprehensive work breakdown that includes development effort, support functions, and procurements.
· A top-down estimate derived from analogy or a standard parametric cost model.

An integrated cost estimate may be derived from the bottom-up and top-down estimates by subjecting each estimate to review and iterating the estimates until satisfactory convergence is achieved.
The costing of the development effort should address the standard life-cycle activities needed to:

· Develop requirements.
· Translate requirements into designs.
· Implement the designs.

· Unit test the code.
· Perform integration and pre-acceptance testing, including testbeds.
· Correct defects and implement design changes.
· Deliver and install the product, and train both users and operators.
· Provide support to integration with hardware and test.
· Provide post-delivery support to operations and maintenance.
Costing should also address support functions, communication activities, and procurements such as the following:
· Procurement and development of the hardware and software needed for the development and test environments.
· Training the staff in the development methodology and familiarizing them with the project systems.
· Computer system administration.
· Maintenance and upgrade of development tools.
· Software support to the modeling and simulation of hardware systems.
· Development of simulated data in the absence of actual input data sets.
· Adaptation of inherited software, multi-mission software, COTS products, and public domain software modules or tools that have not been characterized, or whose internal functions must be modified.
· Software system engineering.
· Configuration management and the management of defects.
· Documentation.
· Software quality assurance. (For more information, refer to Project Software Quality Assurance Planning, JPL Rules! DocID 44452.)

· Independent verification and validation.
· Definition, collection, analysis, and reporting of the measures identified through the “Software Development Monitoring and Control” Requirement.
· Milestone reviews, peer reviews, and in-process reviews with suppliers and partners.
· Project meetings and briefings, technical interchanges/coordination meetings, supplier visits, etc.
· Effort required to monitor supplier progress and verify work products.
· Predictable but difficult to quantify factors, such as workforce turnover, requirements volatility, and possible incompatibilities with the target computer hardware.
	
	
	

	2.2.2 d
	Quantification of the uncertainty in the estimate.
	
	N
	in WA?

	2.2.3
	The cost estimate shall recommend a funded margin that is based on a risk management plan and staffing profile.
	
	N
	in WA?

	
	Note: On some projects and tasks, margin may be held by a different level of management than that making the software cost estimate.
	
	
	

	2.2.4
	At key development milestones or when the development is re-planned, the cost-to-complete the software product shall be re-assessed and the results institutionally archived.
	
	N
	Do you do this?

	2.3
	Software Risk Management
	
	
	

	2.3.1
	There shall be a documented approach to risk management that classifies software risks and describes mitigation measures.
	
	N
	Risk not mentioned anywhere.

	
	Note: The risk approach should include an explanation of how risks will be evaluated, a mechanism for tracking and updating identified risks, and criteria for action.

Guidelines for implementing a risk management process are provided in “Risk Management Process Implementation” (JPL Rules! DocID 57312). Risk Management for Multi-mission ground systems is defined in “Preparation Guide for Development and Deployment Plans” (DSMS 813-106).

A person responsible for software risk management (risk owner) should be designated.
Because software development has unique risks, software risks should be specifically identified in addition to other project or task risks. A workshop to identify risks is recommended. Most risks can ultimately be translated into cost and schedule impacts. Possible sources include:
· Uncertain/ambiguous/unstable requirements and unverified assumptions.
· External dependencies on entities such as developers of interfacing subsystems, vendors, and users.
· Technical interfaces that have not been fully defined or verified.
· Feasibility of the proposed design within the agreed upon cost and budget.
· Inability to meet critical performance requirements – tight margins.
· Maturity and flexibility of the implementation language (reference “NASA Lesson Learned” #593).
· Maturity of the selected development/test tools.
· Timely implementation of development and test environment.
· Access to satisfactory verification and validation environments (e.g., testbeds, simulators).
· Developer availability.
· Developer productivity as a function of skill level and tool familiarity.
· Maturity of the development team.
· Critical schedule interdependencies, especially for work done out-of-house.
· Adaptation/integration of Off-The-Shelf products and legacy code.

· COTS upgrades and migrations driven by supplier.

· Adequacy of time allocated to defect identification and rework.
· Programmatic risks, including probable changes in budget, scope, and key sponsor personnel.
Risks should be classified, using the project or task schema if available, with a quantitative measure of likelihood and consequences.
Mitigation plans may be documented either in a project risk management plan or in a section of the software plan. Each mitigation plan should identify trigger events and the responsibilities for monitoring these events and taking appropriate mitigation actions.
	
	
	

	2.3.2
	To maintain visibility of software risks and facilitate timely mitigation, a list of currently active risks shall be maintained. Those risks identified as meeting a defined risk threshold shall have mitigation plans.
	
	N
	Risk not mentioned anywhere.

	
	Note: The software risk list may be managed separately or may be integrated into the project risk list.

Review and updating of the risk list and associated mitigation plans should be the responsibility of the designated software risk owner.
	
	
	

	2.3.3
	Mitigation plans and the associated risk list shall be reviewed periodically in accord with the “Software Development Monitoring and Control” Requirement, and revised as needed.
	
	N
	Risk not mentioned anywhere

	
	Note: At the minimum, risk assessment and mitigation should be revisited at all major software development milestone reviews (e.g., project Preliminary Design Review[PDR] and Critical Design Review[CDR]), and whenever the software plan is revised. An important input to this process is status information collected in accord with the “Software Development Monitoring and Control” Requirement.
	
	
	

	2.4
	Software Acquisition Management
	
	
	

	
	Note: The term “supplier” in the following requirements refers to organizations external to JPL providing software as an end item deliverable.
	
	
	

	2.4.1
	A Statement of Work (SOW) for software being acquired shall be prepared and documented.
	5.3.1
	Y
	

	
	Note: For Flight Projects the JPL “Procurement Requirements Packages
” Procedure (JPL Rules! DocID 32992) describes the procedure for generating requirements for procurements.
	
	
	

	2.4.2
	The SOW shall clearly define the deliverables to be provided to JPL by the supplier, and to be provided to the supplier by JPL.
	5.3.2 TDA?
	?
	This has to be in the contract or SOW.

	2.4.3
	Documented software supplier selection criteria shall be established.
	5.3.1.2
	Y
	

	2.4.4
	A primary criterion in all supplier selections shall be compliance of the supplier’s proposed software plan with the required activities that comprise the JPL Software Development Requirements.
	
	N
	Or compliance with your SDR compliant procedure?

	
	Note: Important factors in supplier selection include strategic business alliances, the need for collaborative technology development, technical competence, and organizational process maturity.
	
	
	

	2.4.5
	The roles and responsibilities of both JPL and the supplier throughout the acquisition life-cycle shall be described, documented, and maintained. These roles extend from task definition and supplier selection through implementation and acceptance by JPL.
	5.3.2 TDA? 5.3.1?
	?
	Has to be somewhere.

	2.4.6
	All JPL reviews and verifications shall be planned and documented in accord with the activities in the “Software Review” Requirement and the “Software Process and Product Verification and Validation” Requirement.
	
	N
	 Need to figure out what you are going to do here.

	2.4.7
	Prior to the start of the supplier’s software development, JPL shall establish documented agreements with the supplier that address the following topics:
	
	
	

	2.4.7 a
	Access to development documentation and associated technical information, intermediate software products, detailed technical reviews, and milestone reviews.
	
	?
	You probably have this, but it isn’t formally captured.

	2.4.7 b
	Provisions for JPL to verify:
	
	
	

	2.4.7 b 1
	Supplier’s handling of requirements changes.
	
	?
	You probably have this, but it isn’t formally captured.

	2.4.7 b 2
	Accurate transformation of high-level requirements into software requirements and detailed designs.
	
	?
	You probably have this, but it isn’t formally captured.

	2.4.7 b 3
	The specification of interfaces between the supplier’s product and systems external to it.
	
	?
	You probably have this, but it isn’t formally captured.

	2.4.7 b 4
	Adequacy of the supplier’s risk management plan and its implementation in accord with the required activities in the “Software Risk Management” Requirement.
	
	?
	Need to address risk management.

	2.4.7 b 5
	Adequacy of the supplier’s integration and test plan and its implementation in accord with the required activities in the “Software Integration and Test” Requirement.
	
	?
	You probably have this, but it isn’t formally captured.

	2.4.7 b 6
	Adequacy of the supplier’s configuration management plan and its implementation in accord with the required activities in the “Software Configuration Management” Requirement.
	
	?
	You probably have this, but it isn’t formally captured.

	2.4.7 c
	The content and frequency of progress reports, and product and process metrics to be submitted to JPL.
	
	?
	You probably have this, but it isn’t formally captured.

	2.4.7 d
	Identification of quality records to be maintained by the supplier.
	
	?
	May need to define what the quality records are.

	2.4.7 e
	Documentation and training to accompany the delivered software product.
	
	?
	You probably have this, but it isn’t formally captured.

	
	Note: Examples of delivery transition documents include a release description document, an installation and operations guide, and a test suite to verify the installation.
	
	
	

	2.4.8
	The criteria for acceptance testing of the software being acquired shall be clearly established and assessed against the delivered product prior to acceptance.
	
	?
	Not sure if this is done formally.

	
	Note: There should be an agreement with the supplier that provides for both functional and stress testing, and that documents required changes plus acceptable work-arounds.
	
	
	

	2.4.9
	During the supplier’s development, JPL shall periodically evaluate the supplier’s software development process against the supplier’s approved software plan, in accord with the activities in the JPL “Software Process and Product Verification and Validation” Requirement.
	
	?
	Probably don’t currently do this.

	
	Note: Examination of the supplier’s software quality assurance process is an important part of this evaluation.
	
	
	

	2.4.10
	Acceptance testing shall be conducted in accord with the JPL plan for software acquisition.
	
	?
	You have to do something.

	2.4.11
	With line and project management participation, JPL shall periodically review the progress of major software acquisitions to ensure that:
	
	
	

	2.4.11 a
	Adequate, qualified JPL staff is available to monitor the supplier’s activities.
	
	?
	Do you do this?

	2.4.11 b
	The supplier’s intermediate software work products and activities meet applicable JPL quality standards.
	
	?
	Don’t know if you do this.

	2.4.11 c
	Major risks have been identified and are being dealt with appropriately by both JPL and the supplier.
	
	?
	Haven’t addressed risk formally.

	2.4.11 d
	JPL has taken all reasonable measures to facilitate a successful delivery by the supplier and subsequent integration of the supplier’s product into JPL’s deliverables.
	
	?
	Don’t know if you actively do this.

	
	Note: Software Acquisition management activities for JPL projects are carried out in accord with the JPL “Surveillance” Requirement (JPL Rules! DocID 57353).
	
	
	

	2.5
	Software Development Monitoring and Control
	
	
	

	2.5.1
	Measurement and analysis activities for evaluating and reporting development progress, software characteristics, and the status of commitments, including receivables and deliverables, shall be defined and documented in the software plan.
	
	N
	No discussion of measures/metrics or monitoring & control.

	
	Note: The following measurement categories are designed to support the analysis activities to verify that the development plan is being executed. This will help reduce defects, streamline development activities, and identify areas where the plan may need to be changed. The measurement categories are:
· Software progress tracking measures, e.g. comparison of actual and planned progress, earned value, workforce staffing planned versus actual, workforce training planned versus actual, risk indicators(e.g. number of risks on risk list, number of mitigated risks, number of risks that occur Etc.), cost and obligations versus budget and reserve .

· Software functionality measures, e.g. Number of modules, number of interfaces, lines of code, requirements satisfied, resource usage versus margins.

· Software quality measures, e.g., defect density, test time to discover a defect, cumulative operation time to discover a defect, rework effort, root causes of defects, defect criticality, code volatility, and peer review metrics of critical work products.

· Software requirements volatility measures, e.g., number of requirements changes over time, number of changes per requirement.

· Software characteristics, e.g., software classes (A, B, C, D), software type (flight, instrument, ground, other), programming language, etc.
	
	
	

	2.5.2
	Procedures and mechanisms to support the collection, analysis, and preservation of the measures shall be documented in the software plan and implemented.
	
	N
	Defining this may be time consuming.

	
	Note: Measurement data, measurement specifications, and analysis results will be preserved for monitoring and historical purposes.

Automated and unobtrusive data collection and analysis is recommended wherever practical. In many cases, the configuration management tool may be used for data collection and analysis.
	
	
	

	2.5.3
	Measures on development activities (including product engineering, verification, and management activities) shall be analyzed and reported at regularly scheduled reviews.
	
	N
	Once you decide what to collect, this should be easy to do.

	2.5.4
	Based on collected development progress data, management actions shall be taken to keep the development on the planned schedule and budget.
	
	N
	You are probably already doing something.

	
	Note: Particular attention should be paid to track and manage:
· Implementation of risk mitigation plans.
· Reserves and margins.
· Critical paths and dependencies.
· Receivables and deliverables.
· Workforce allocations.
If budget reserves are held at a level above a software development task, the software manager must keep the project/program manager apprised of development progress and probable need for additional resources.
	
	
	

	2.5.5
	At the conclusion of the development, selected work products, measurement data, and lessons learned shall be collected by the project and delivered into the appropriate institutional archive.
	
	N?
	I don’t know if this is applicable to you.

	
	Note: The specific institutional archive will vary depending upon the project. PDMS could provide the archive for some projects, while the line organization may manage the archive for other tasks.
	
	
	

	2.5.6
	Stakeholder involvement shall be managed to ensure appropriate participation and coordination throughout the development process.
	6.2.5, 6.3, 6.4
	Y
	

	2.6
	Software Configuration Management
	
	
	

	2.6.1
	A software configuration management system shall be established, documented and maintained to control software work products, and the development and test environment.
	8.3.3
	Partial
	No discussion of work products.

	
	Note: The software CM plan for projects should fit within the CM framework established by the project as governed by “Configuration Management Planning for Project Elements” JPL Rules! DocID 54392.

A configuration management system may involve several levels of code and documentation control. It includes both the software tools and the procedures that describe how the tools should be used.
Typical work products subject to configuration management include the following:
· Software documentation including plans, requirements, architecture, designs, and user documentation.
· Code.

· Off-The-Shelf software.
· Build procedures, tools, and scripts.
· Test cases, scenarios, scripts, data, and results.
· Critical records such as change requests, defect reports and action items.
Software configuration management responsibilities typically include the following:
· Maintain a repository for code, documentation and other work products.
· Provide training in use of CM tools and procedures.
· Establish rules for submitting both new and revised items to the library.
· Provide coordination for updating multiple products in one or more locations; differences in site-unique versions should be identified and tracked.
· Identify the version of all software items that constitute a specific build or a delivered product.
· Identify differences between controlled versions – both source code differences and differences in functionality between versions.
· Document the software and hardware used in the development and test environment, including version and known problems; trace software products to the operating system and development tools employed, so that the development environment may be accurately recreated.
· Build production software items into a linked set of modules ready for integration and test; rebuild previous development or delivered versions upon request.
· Control simultaneous updating of a software item by more than one person.
· Record and track all actions resulting from defect reports and change requests, for all items under configuration management, from initiation through release of the changed product.
· Collect and summarize metrics to help assess the state of product development.
· Monitor and report on the status of software items, defect reports and change requests, and the implementation of approved changes.
· Archive the software for each delivered product, together with its associated documentation and quality records.
· Execute periodic back-ups for items under CM and develop disaster recovery procedures.
· Identify test status of software items under configuration management. Examples of test status include untested (under development), unit test, integration test, acceptance test, defect fixing, and released.
The configuration management system should support incremental software builds and automated testing.
	
	
	

	2.6.2
	Software work products to be placed under configuration management shall be identified, and the criteria for baselining each item shall be established.
	
	N
	Should be easy to set a policy if you don’t have one.

	2.6.3
	Baselines for identified software work products shall be established and maintained.
	
	?
	you must be doing it

	2.6.4
	A change control authority shall be identified for all items under configuration management.
	8.6.4
	Partial?
	all work products?

	2.6.5
	Change requests and software problem/failure reports for configuration items shall be recorded, reviewed, analyzed, dispositioned, and tracked according to a documented procedure.
	8.5.1
	Partial?
	All work products? Problem/failure reports?

	
	Note: The mechanisms for handling change requests and problem/failure reports should be integrated into the configuration management system.
	
	
	

	2.6.6
	Build procedures and all other required inputs shall be documented and maintained in order to support recreation of the work products needed for a delivery.
	
	?
	You’ve got to have something.

	2.6.7
	If there are multiple levels of configuration management, the conditions for transition from one level to the next shall be documented.
	
	N/A?
	Does this apply?

	2.6.8
	Configuration audits shall be performed and documented to confirm the configuration baselines and associated information are accurate.
	
	N
	Configuration audits can be time consuming to set up.

	
	Note: Configuration audits assess the integrity of baselines and verify that configuration records correctly identify the status of the configuration items. "Integrity" is the degree to which a system prevents unauthorized access to, or modification of, specified work products. A configuration audit includes review of evidence that the CM plan is being followed.
	
	
	

	3.0
	Software Product Engineering Requirements
	
	
	

	
	Note: Reference material providing an overview of requirements development and management, design, implementation, delivery and maintenance is provided in “Software Product Engineering Overview” (JPL Rules! DocID 60252).
	
	
	

	3.1
	Software Requirements Development and Management
	
	
	

	3.1.1
	System requirements allocated to software – including stakeholders’ needs and development constraints – shall be elicited and documented.
	5.1.1, 5.1.2, 5.1.3, 5.2, 5.6.1, 5.7
	Partial
	Are you documenting the requirements?

	
	Note: Eliciting requirements should include proactively identifying additional requirements not explicitly provided by customers. Examples of techniques for developing requirements are use of prototypes, interviews, operational analyses, and technology demonstrations. More examples and explanations of the process are provided in the Software Requirements Development and Management Guide (JPL D-29105).
	
	
	

	3.1.2
	Derived software requirements shall be defined, documented, analyzed, and maintained to ensure that they are necessary and sufficient to satisfy the system requirements and meet the needs of design and test.
	5.1.1, 5.1.2, 5.1.3, 5.2, 5.6.1, 5.7
	?
	Not clear which are system requirements and which are derived requirements.

	
	Note: Requirements development activities should include:
· Engaging stakeholders to elicit and document needs, expectations, constraints, and external interfaces for all life-cycle phases.
· Establishment, refinement and elaboration of operational concepts and scenarios into scenarios suitable for software product verification and validation.

· Identification, documentation and maintenance of required functionality .
· Analysis of requirements to ensure that they are complete, feasible, realizable, and verifiable.

· Consideration of trade-offs in balancing requirements with risk and cost.

· An analysis of possible software failures.
· Explicit consideration of off-nominal behavior and possible failure of interfacing hardware and software components.
	
	
	

	3.1.3
	Resource margins requirements shall be established and documented.
	
	?
	Presumably, you are doing this. Does it vary from project to project?

	3.1.4
	Software requirements shall be analyzed for verifiability.
	
	?
	You have to be doing this.

	3.1.5
	Multiple requirements validation techniques shall be used as appropriate to ensure software will perform as intended in the operational environment.
	
	?
	If you aren’t do this, you need to think about how to start.

	
	Note: Requirements validation should be performed early in the development effort. Examples of techniques include peer review, analysis, simulation, and prototyping. An example of using multiple validation techniques would be a validation analysis performed by the system engineer followed by a peer review.
	
	
	

	3.1.6
	Software requirements, including proposed changes to baselined requirements, shall be analyzed for risk.
	
	N
	No analysis for risk mentioned, but you are probably doing something.

	3.1.7
	Software requirements shall be prioritized in accordance with project guidelines.
	5.1.5, 5.5.1, 8.5.1
	Y
	

	
	Note: Prioritization of requirements is done to facilitate implementation planning for risky components and potential revisions to the software plan to accommodate schedule and budget shortfalls. (For a small project or a well-defined and budgeted task, prioritization of requirements may not be needed.)
	
	
	

	3.1.8
	Software requirements for interfaces (internal and external, including hardware) shall be identified, analyzed for coverage and completeness, documented and placed under change control.
	
	?
	You’ve got to be doing something.

	3.1.9
	The software requirements shall be traced upward to the system requirements and downward to the software units, applicable work products, and test cases.
These requirements traces shall be maintained throughout the development.
	
	N
	Don’t know where you stand on requirements/capabilities documents, tracing up and down.

	3.1.10
	A formal review of the software requirements shall be conducted.
	
	N
	

	
	Note: This review should be conducted prior to design and after the requirements have stabilized, and the review results should be reported at a project milestone review.
Requirements developers, implementers, and users should review the software requirements for each iteration or increment to identify and resolve ambiguities and conflicts. Inconsistencies between software requirements and the software plans should also be identified and resolved.
Identification of test cases should be considered when software requirements are matured and refined.
	
	
	

	3.1.11
	Approval of the software requirements shall be obtained from both the customer and the implementation manager.
	5.1.5, 5.1.6
	Y
	

	
	Note: Concurrence and commitment of the development team is normally accomplished via participation in requirements development and review, and may be formalized by a work agreement if appropriate.
	
	
	

	3.1.12
	Proposed software requirements changes shall be documented, assessed for cost, schedule, technical impacts, and risk before being accepted as a delivery commitment.
	8.5.1
	Partial
	Documented in JIRA, but no discussion of assessment.

	3.2
	Software Design
	
	
	

	
	Architectural Design Activities
	
	
	

	3.2.1
	A software architectural design shall be developed, documented, and maintained.
	
	Y
	

	
	Note: A high-level architectural design should be prepared in support of Software Management and Development Planning. This is the result of domain analysis that identifies the fundamental concepts of a domain, their attributes and behaviors, and the interactions and relationships with other domains.
Where appropriate, multiple architectural design solutions should be developed, and criteria for the selection should be established. Trade-off studies, rationale for design selection, and the selected design should be documented.

The architectural design documentation should include an explicit identification of software configuration items and their relationships, and should include a narrative that documents performance, quality of service, assumptions, and constraints.
To assist the preparation of initial cost estimates, those developing the preliminary version of the architectural design should include information about the differing technical complexity of the architectural components.
	
	
	

	3.2.2
	Project-specific design rules shall be documented.
	
	?
	You’ve got this somewhere.

	3.2.3
	Compliance with project-specific design rules shall be verified.
	6.6.7, 6.6.9, 8.1.3
	Y
	I’m assuming that the reviews look for adherence to design rules.

	
	Note: Compliance with design rules is normally verified in peer reviews or via examination by the lead designer.
In the event that an unfamiliar or immature design methodology has been selected, estimates of both the additional training needed and the maturation rate of developer productivity should be supplied to those preparing the initial cost estimates.
	
	
	

	3.2.4
	Failure modes shall be identified, analyzed for criticality, and used for detailed design.
	
	N
	

	3.2.5
	A determination of which product components should be developed, purchased, or inherited shall be made, using criteria documented in the software plan.
	5.1.4
	Partial
	documented?

	3.2.6
	An inheritance review for legacy software shall be conducted.
	
	N?
	You mention aspects of incorporating the s/w, but do you look in enough detail (requirements match, design compliance, coding rules compliance)?

	
	Note: Legacy software includes reusable libraries, application software, design patterns, Off-The-Shelf software, etc. that require tailoring and adaptation.
Because an inheritance review may influence the software architecture, it is important to hold this review before finalizing the architectural design.
	
	
	

	3.2.7
	All external and key internal component interfaces shall be identified.
	
	?
	You must have this.

	
	Note: Hardware-software interfaces should be documented and controlled with changes systematically communicated to all affected parties. (Reference “NASA Lesson Learned” #400.)
	
	
	

	3.2.8
	Dependencies among components shall be determined.
	
	?
	Would be somewhat easy to start requiring this. Need to figure out how to store it.

	3.2.9
	Interface specifications for each component shall be created and documented.
	
	?
	Would be somewhat easy to start requiring this. Need to figure out how to store it.

	3.2.10
	Data types, valid ranges, and appropriate exception handling for components shall be defined.
	
	?
	May not capture this.

	3.2.11
	Before the architectural design is placed under configuration management, it shall be reviewed to verify compliance with Design, Verification/Validation and Operations Principles for Flight Systems (JPL Rules! DocID 43913).
	
	N
	Need to look at Design Principles to assess how well you comply.

	
	Note: The Design, Verification/Validation and Operations Principles for Flight Systems (Design Principles) were developed for both flight and ground software and provide valuable guidance for all developers.
All stakeholders with an interest in the proposed architectural design should participate in this review. Operational scenarios should be used to verify that the architectural design includes the required functionality, operating modes, and states.
New technologies, tools, and architectural approaches to be employed should undergo a formal technology readiness review and should be assessed as potential risk items.
	
	
	

	3.2.12
	The architectural design shall be maintained to reflect changes in requirements and design.
	
	Y
	

	
	Detailed Design Activities
	
	
	

	3.2.13
	A detailed design shall be developed, documented, and maintained.
	
	?
	You must do it, but I didn’t see where/how it is done.

	
	Note: In developing a detailed design, alternatives designs should be considered as appropriate, and design trade-offs evaluated using established criteria.

Operational concepts, scenarios, and operational environments should be elaborated to a degree of detail sufficient to develop detailed designs.
	
	
	

	3.2.14
	Margins for critical performance parameters shall be established early, tracked continually, and re-examined in conjunction with significant design changes.
	
	? N/A?
	If you have them, you track them.

	
	Note: Margin requirements are often defined for RAM and EPROM allocations, CPU usage, communications channel utilization, allowable interrupt rates and durations, and control cycle rates.
	
	
	

	3.2.15
	Fault protection and correction requirements shall be identified and allocated to the affected software units.
	
	?
	N/A?

	
	Note: Fault detection and correction should consider off-nominal behavior and possible failure of interfacing hardware components.
	
	
	

	3.2.16
	Detailed design reviews shall be conducted to eliminate defects, verify compliance with requirements, and confirm implementability.
	6.6.7, 8.1.3
	Partial
	External reviewers? All aspects listed?

	
	Note: Review of a software design should include technical experts external to the development team, engineers who understand the design and function of all interfacing hardware and software components, and representatives from the operations team.
	
	
	

	3.2.17
	After review and approval, the documented detailed design shall be baselined, put under configuration management, and maintained as necessary.
	
	?
	Again, you must be doing this.

	
	Note: The detailed design should be consistent with the architectural design. Any inconsistencies should be noted, reviewed, and approved, and corresponding changes should be made to the architectural design.
Where appropriate this documentation should include data flow diagrams, state transitions, or equivalent graphics to facilitate subsequent design and testing. Choice of the design documentation technique will depend on the type of application. Standard notations such as Unified Modeling Language (UML) should be adopted in lieu of creating a new notation for design documentation.
Test cases, previously developed in conjunction with requirements analysis, should be elaborated and refined when the detailed design is mature.
Changes in the detailed design should be reflected in updates to the requirements traceability matrix.
	
	
	

	3.2.18
	User documentation to support operations and maintenance shall be prepared to accompany the delivered product.
	8.5.3
	Y
	

	3.3
	Software Implementation
	
	
	

	3.3.1
	Source code for each unit identified in the detailed design shall be developed following the coding standards and guidelines identified in the software plan.
	8.3.2
	Y
	

	3.3.2
	Unit testing shall be employed to verify error detection and correction logic.
	
	?
	You must do something.

	3.3.3
	All parameters passed to the units as inputs or coming out of the units as outputs shall be verified for the validity of their data types and the range of their values.
	
	?
	?

	
	Note: Run-time checking is one of several options that may be used. If run-time checking is impractical because of excessive CPU usage, other means should be used to protect against erroneous data (e.g., analysis and verification of configuration tables).
The software logic should provide for fault correction and recovery in the event that allowable ranges are violated.
	
	
	

	3.3.4
	Critical software units shall be reviewed (desk top review, code walk-through, or inspection, etc.) in accordance with the software plan.
	
	?
	critical? reviewed?

	
	Note: The purpose of the review is to identify any logical errors, verify adherence to coding standards, verify architectural integrity, ensure the use of good practices and procedures, and verify compliance with design principles.
At least one person other than the implementer should review the code prior to formal unit test. In many cases, it is appropriate to include the following in a peer review: technical experts external to the software development, engineers who understand the design and function of all interfacing hardware and software components, and representatives from the operations team.
A detailed code walk-through should be performed on post-delivery changes (or patches) to critical software modules. (Reference “NASA Lesson Learned” #310.) This walkthrough should verify that the changed code is covered by unit test cases.
	
	
	

	3.3.5
	Real-time software performance shall be measured continually to ensure that it has been implemented in a manner consistent with margin requirements on resource usage.
	
	? N/A?
	

	
	Note: This is especially important for memory allocation, CPU usage, communications channel utilization, allowable interrupt-rates and durations, and control cycle rates.
	
	
	

	3.3.6
	Unit test cases and procedures for critical software units shall be documented and executed.
	
	?
	

	
	Note: Unit tests should be captured in a form that supports automated regression testing whenever possible.
	
	
	

	3.3.7
	Test results for critical software units shall be recorded and analyzed.
	6.6.6
	?
	regression test automated with analysis?

	
	Note: A unit test report should include test results, code coverage, test configurations, and any environmental set-ups that are required.
	
	
	

	3.3.8
	A peer-review of the unit test results for critical software units shall be conducted prior to baselining a unit, in accordance with the software plan.
	
	?
	

	3.3.9
	When a software unit has been reworked or modified, regression testing shall be conducted to ensure that the problem was fixed and there were no side effects from the rework.
	6.6.6
	?
	regression tests automated with nightly builds?

	
	Note: The implementers should perform regression testing insofar as it is practical. In any event, it is expected that the integration and test team will do additional regression testing.
	
	
	

	3.3.10
	As-built work product documentation shall be updated and maintained to reflect changes.
	
	?
	

	3.4
	Software Delivery
	
	
	

	3.4.1
	A delivered software product shall include both code and documentation.
	7.1
	Y
	

	
	Note: Typical software delivery components include:
· Source code, executable or compiled code, test code, libraries, and scripts, from which all debugging and testing statements, instrumentation, and seeded defects have been removed or disabled.
· Configuration files (startup files, tables).
· Database(s) or data files.
· Resource files (e.g., icons, graphics, sound, video).
· Requirement and design information; including descriptions of new or changed functionality.
· COTS software, government furnished software, freeware, and open-source tools needed to construct and operate the software.
· Make files, scripts, build and load instructions, and other tools supporting building, test, installation, and operation.
· Description of both development and operational environments and settings (e.g., environment variables, switch and jumper settings, command line arguments, directory structures, access control parameters, system generation parameters, etc.).
· User’s guides, software operator’s manuals, and help files.
· Training plans and materials.
· Test reports and other verification results.
· Documentation of known problems, liens, or defects with workarounds.
· Points of contact, problem reporting protocols, and other end-user support.
· Licenses and copyright documents.
	
	
	

	3.4.2
	Prior to delivery, the software product shall be formally reviewed to determine that it is complete and ready for delivery.
	7.2
	Y
	

	
	Note: For flight software, readiness for delivery is documented in a “Software Review/ Certification Record” (JPL Rules! DocID 62192). Other software is subject to an equivalent delivery readiness review.
	
	
	

	3.4.3
	All work products included in a delivery shall be archived, with a second copy of the archive placed in a geographically separate location to facilitate disaster recovery.
	
	?
	in AFS?

	3.4.4
	Both software and documents containing intellectual property that are delivered to entities external to JPL shall satisfy the requirements of the JPL “ITAR and EAR Activities for Projects, Tasks, and Technology DevelopmentsNew Technology, Laboratory Notebooks, ICB Awards, Software Dissemination and New Ventures

” (JPL Rules! DocID 56592), and the JPL “” Procedure (JPL Rules! DocID 44313).
	6.1.3, 6.1.4
	Y
	

	3.5
	Software Maintenance
	
	
	

	3.5.1
	The approach to software maintenance during the operations phase of the life-cycle shall be documented and shall maintain the same engineering standards and process discipline that are applied to the original software development as defined in this document.
	8.0
	Y
	

	3.5.2
	When a modification to the software product is implemented, related software work products (including requirements, design, test, and user documentation) shall be maintained at an “as-built” level.
	
	?
	probably doing this.

	
	Note: The method for maintaining the “as-built” documentation may vary depending on the life expectancy and reuse of the product, the maintenance budget, and the automation of the documentation process used.
	
	
	

	3.6
	Software Retirement
	
	
	

	3.6.1
	Prior to decommissioning of a software product, stakeholders shall be consulted and a retirement plan shall be developed and documented.
	
	N
	Sample text in SMP tool would work.

	
	Note: The retirement plan should include, as appropriate, an analysis of impact; identification of replacement product and transition plan; procedure for archival and post-archival access of software, environment and documentation; and identification of responsibility for any residual support.
	
	
	

	4.0
	Software Verification and Validation Requirements
	
	
	

	
	Note: Reference material is provided in “Software Verification Overview” (JPL Rules! DocID 60253).

“Verification” addresses whether the work product properly reflects the specified requirements. “Validation” addresses whether the work product will fulfill its intended use. Verification and validation can use similar approaches (e.g., test, analysis, inspection, demonstration, or simulation), but the objectives are distinct. Verification and validation often run concurrently and may use portions of the same environment.
	
	
	

	4.1
	Software Process and Product Verification and Validation
	
	
	

	
	Quality and Objectives Plan
	
	
	

	4.1.1
	Quantitative objectives for the quality of the software products shall be defined and tracked by metrics.
	
	N
	Need to think about what you want to capture.

	
	Note: Quality metrics are recommended for tracking the attainment of quality objectives. Examples of quality metrics include: defect density for requirements, defect density for source code during different stages of testing, number of problem reports opened and closed over time, and percent of defects removed over time during different stages of testing.
	
	
	

	4.1.2
	Verification and test strategies for achieving product quality objectives shall be generated to guide the activities described in the “Software Review” Requirements and “Software Integration and Test” Requirements.
	
	?
	Depends on what you are doing now.

	
	Note: If the project has software safety requirements, advanced verification techniques (such as software fault tree analysis or formal methods) should be applied, as appropriate.
	
	
	

	4.1.3
	For NPG 7120.5 projects and other software development identified by the sponsor, a software development process and product risk assessment (refer to Project Software Quality Assurance Planning, JPL Rules! DocID 44452) and a software safety hazard analysis shall be performed by the JPL Software Quality Assurance (SQA) Organization.
	
	N/A
	

	
	Note: Refer to JPL “Mission Assurance Program Implementation and Independent Assessment” Procedure (JPL Rules! DocID 32133).
	
	
	

	
	Process Verification
	
	
	

	4.1.4
	The software development processes, as defined in the software plans, shall be objectively evaluated at the beginning of development and then reevaluated periodically to ensure that the processes support the product quality objectives.
	6.2.4, 8.1.2
	Y
	

	
	Note: An "objective evaluation” is an assessment based upon information, records, or statements of fact that are acquired from observation, measurement, or test and are verifiable.
	
	
	

	
	Product Verification
	
	
	

	4.1.5
	At designated points in the development cycle, intermediate and final work products shall be audited to verify compliance with requirements and to ensure adherence to documented development procedures and standards, as defined in the software plan.
	
	?
	You do this for code at the end, but not sure you do it for anything else.

	4.1.6
	Prior to delivery, there shall be an independent verification that all software requirements identified for this delivery have been met, that all approved changes have been implemented, and that all defects designated for resolution prior to delivery have been resolved.
	
	?
	Not sure you do all of this.

	
	Note: Such verification is normally done by an organization that has a reporting channel independent of software management. For a smaller project the function can be performed by a team member not directly responsible for the delivery. This verification activity examines test cases and results, and traceability of test cases to software and project requirements.
	
	
	

	
	Corrective Actions and Product Improvement
	
	
	

	4.1.7
	Non-compliances or deviations found during both product development and post-delivery maintenance activities shall be recorded, tracked, and resolved.
	
	?
	Need to figure out how to do this.

	
	Note: All discrepancies found during a software certification review should be recorded as action items in a review report and tracked until closure. For flight software, this review report is the “Software Review and Certification Record” (SRCR) (Refer to JPL Rules! DocID 62192).
	
	
	

	4.1.8
	The results of verification activities and defect history shall be analyzed to understand defect causes, identify systemic problems, and make recommendations for improvements.
	
	?
	Probably not doing this.

	4.1.9
	Product and process quality metrics compatible with the software plan shall be defined and collected periodically as a basis for both process verification and process improvement.
	
	N
	Need to have metrics first, then use them.

	
	Product Validation
	
	
	

	
	Note: Validation of software is conducted at the component level and continues at each significant level of integration, terminating with the application of operational mission scenarios to the completed system.
	
	
	

	4.1.10
	The software plan shall identify the products to be validated; describe the planned levels of validation; specify the plan for the development of the required validation environments, procedures, and acceptance criteria; and estimate validation effort.
	
	?
	You must do some of it, but may not be doing enough.

	
	Note: The types of products to be considered for validation include:

· Requirements

· Designs

· Code

· User Documentation

· Simulations

Validation methods are dependant on the product or component being validated and the availability of realistic operational environments. Validation methods include:

· Peer reviews

· Inspections

· Prototypes

· Simulations

· Operational readiness tests

· Demonstrations

· Soak tests

Tests and demonstrations using operational scenarios conducted by operations personnel or acceptable surrogates should be employed for validation whenever practical. Peer reviews or inspections may be used for validation of software products and systems when methods that are more rigorous are not possible. These methods should be viewed as less dependable than tests and demonstrations.

Reviews are typically the most effective way to validate requirements and designs. In such a case, care must be taken to involve operations personnel and to examine probable system behavior under a spectrum of operational scenarios.
	
	
	

	4.1.11
	Operational scenarios used for validation shall address both nominal and off-nominal behavior of the system.
	
	?
	Don’t know if you do this. Probably do to some extent.

	
	Note: Ability to identify and recover from failures is especially important.
	
	
	

	4.1.12
	Defects found during validation activities shall be documented, prioritized, and addressed either by validated design changes or by documented and validated work-arounds.
	
	?
	?

	4.2
	Software Review
	
	
	

	
	Review Planning
	
	
	

	4.2.1
	Software reviews - both milestone reviews and peer reviews - shall be defined in the review plan section of the software plan.
	
	N
	

	
	Note: Flight Projects should refer to JPL “Planning and Implementing Project Reviews” Requirement (JPL Rules! DocID 56973) for further details.

Multi-Mission Ground System tasks should refer to “Standards and Guidelines for Service Capability Development (SCD) Reviews” (DSMS 813-101).

Additional guidance is provided in the “Software Reviews Handbook” (JPL D-25798).
	
	
	

	4.2.2
	Milestone reviews and peer reviews shall be organized and managed to ensure the following:
	
	
	

	4.2.2 a
	The composition and responsibilities of the review participants cover all perspectives necessary to identify and resolve issues.
	
	?
	

	4.2.2 b
	Findings and responses to action items for milestone and peer reviews are documented.
	
	?
	you probably do this

	4.2.3
	An estimate of the resources required for both milestone reviews and peer reviews shall be prepared in accord with the “Software Cost Estimation” Requirement.
	
	N
	You probably don’t do this.

	
	Milestone Reviews
	
	
	

	4.2.4
	Each milestone review shall address the specified entry and exit criteria for the life-cycle phases defined in the software plan. The following topics shall be addressed in one or more milestone reviews, as defined in the review section of the software plan:
	
	?
	Don’t really talk about milestone reviews. Need to figure out what the appropriate milestone review is.

	4.2.4 a
	Definition and adequacy of customer and user requirements.
	
	?
	

	4.2.4 b
	Commitment to a proposal or work package.
	
	?
	

	4.2.4 c
	Definition and adequacy of software plans
	
	?
	

	4.2.4 d
	Inheritance of legacy code, reusable components, and Off-The-Shelf products - emphasis on risk and effort.
	
	?
	

	4.2.4 e
	Technology readiness.
	
	?
	

	4.2.4 f
	Architectural design, addressing interfaces and interactions among modules.
	
	?
	

	4.2.4 g
	Definition and adequacy of software requirements and design (iterative development may necessitate multiple reviews).
	
	?
	

	4.2.4 h
	Test approach and test plan, including design of testbeds, simulators, and models.
	
	?
	

	4.2.4 i
	Test readiness.
	
	?
	

	4.2.5 j
	Test results.
	
	?
	

	4.2.4 k
	Functional verification/validation or pre-acceptance test.
	
	?
	

	4.2.4 l
	Requirements for software delivery and maintenance.
	
	?
	

	
	Note: Software reviews may be stand-alone or combined with other reviews at the subsystem, system, or project level.
If significant software inheritance is planned, a review should be held when the high-level design of the software is complete (e.g., prior to project PDR). Its purpose is to establish feasibility and risk, and to estimate the additional development effort required. The approach to inheritance should also be reviewed when the detailed design of the software is complete (e.g., at project CDR).

Reviews of inherited code should address any known liens or defects as well as proper functionality. (Reference “NASA Lessons Learned” #310.)
	
	
	

	
	Peer Reviews
	
	
	

	4.2.5
	The products targeted for software peer reviews and the methods to be used shall be identified during software project planning and documented in the review plan section of the software plan.
	
	N
	Don’t describe what you peer review.

	
	Note: The “critical software units” subject to review during implementation should be identified as part of this activity.
Typically, working-level software peer reviews are accomplished via walkthroughs or inspections, with the degree of rigor being tailored to the criticality of the software work products under development.
In addition to reviewing work products, peer reviews reinforce management’s commitment to the development process and promote team building by exposing more junior team members to good design and coding practices. Peer reviews also familiarize team members with the design of other parts of the system for which they are not responsible, thus creating depth in the development team in the event that an individual leaves the team. If done well, peer reviews are high value activities.
	
	
	

	4.2.6
	Software peer reviews shall be applied to software requirements and acceptance test plans/procedures.
	
	?
	

	4.2.7
	Other software work products (designs, code, test results, etc.) shall be peer reviewed as described in the software plan.
	6.6.7, 8.1.3
	Y
	

	4.2.8
	Throughout the software life-cycle and prior to major milestone reviews - such as a Preliminary Design Review (PDR) or Critical Design Review (CDR) - the applicable software products shall undergo software peer reviews, as described in the software plan.
	
	?
	

	4.2.9
	Peer reviewers shall include stakeholders and/or technical experts who are not directly involved in the development of the work product being reviewed.
	
	?
	Participants? Content of reviews?

	
	Note: Peer reviewers should include technical experts external to the development team, engineers who understand the design and function of all interfacing hardware and software components, and representatives from the operations team, as appropriate. Reviewers should be trained in the selected software peer review process. Examples of participants in peer reviews include:
· Peers from the same life-cycle phase (e.g., design).
· Peers from the early or concurrent life-cycle phases (e.g., requirements definition).
· Peers from the later or concurrent life-cycle phases (e.g., integration and test).
· Members of the test team
· Engineers developing interfacing hardware and software.
· System engineers, subsystem engineers, customers, and users who levy the requirements on the software products.
· End users.
· Representatives from the Software Quality Assurance organization.
Stable membership of peer review teams should be considered.
Software work products should be reviewed against checklists, defined review criteria and standards (e.g., design principles or coding standards).
Review material, including checklists and review criteria, should be distributed in advance, and sufficient preparation time should be allocated. If the reviewers are not prepared or if appropriate reviewers are not present, the peer review should be rescheduled.
	
	
	

	4.2.10
	Metrics from software peer reviews including defects and issues identified shall be recorded, summarized, reported, and tracked until closure.
	
	N
	Need those metrics.

	4.2.11
	Major unresolved issues and open action items from the software peer reviews shall be addressed in the appropriate milestone reviews, such as, PDR, CDR, Test Readiness Review (TRR), and the review that typically precedes the delivery of any software product.
	7.1 in delivery
	Y
	

	4.3
	Software Integration and Test
	
	
	

	4.3.1
	The approach for software integration and test shall be established and documented.
	8.3.6, 8.4.2, 8.4.4
	Partial
	Approach described is “lighter” than SDR notes.

	
	Note: An integration and test plan should address the following:
· Definition and acquisition of the required test environment, including tools, platforms, and databases.
· A risk-based test strategy that describes the levels of testing and the desired mix of functional, boundary, and stress testing.

· Test reference and test success criteria.

· Consideration of possible failure modes, including both failure and off-nominal behavior of interfacing hardware components.
· A test strategy for integration of legacy software and third party software, such as real-time operating systems.
· Identification of simulation software required to support integration and test.
· Procedures for recording defects and change requests.
· Guidelines for development, review, and/or reuse of test design, test cases, and test procedures and data.
· Test readiness review prior to test execution.
· Method of documenting test status and results.
· Guidelines for test suspension and resumption, including the approach to recovery from a broken baseline.
· Interfaces with configuration management, the software development team, and software quality assurance.
· Verification matrix that traces requirements to test cases.
· Content of test reports to accompany identified builds.
· Personnel requirements and provisions for training.
· Test schedule.
Formulation of a documented integration and test plan should be done concurrently with the development of software requirements and should include a plan for the validation of documentation for end users. The test plan and status should be updated and reviewed at critical milestones, such as project PDR and CDR.
A risk-based test strategy focuses test resources on components that will be difficult to test and/or are expected to require much effort to fix should defects be found.
	
	
	

	4.3.2
	Test design shall be implemented via test cases, test procedures, and test scripts.
	
	?
	You must do this.

	
	Note: Test design documentation should address the following:
· Identification of the test cases for each build, and associated regression test suites.
· Identification of requirements or capabilities that may not be testable and may be verified by analysis (e.g., timing, buffer usage, etc.) or inspection.
The test design should enable software testing at build, component/product, subsystem testbed, and system testbed levels to incrementally verify functionality and operability.
Test planning and the design of test cases and test procedures should be based on the premise that the software contains serious errors that must be detected via thorough identification of off-nominal, implausible, and otherwise unexpected conditions arising from:
· Defective software logic design.
· Incorrect initialization of parameter values.
· Erroneous parameter values in data input files.
· Hardware failures and transient or anomalous hardware behavior, and unexpected hardware-software interactions.
· Processor resets.
Test plans, procedures, and cases should be updated when requirements change.

For real-time systems it is important to test initial condition states – e.g., boots/resets of the target system and all interfacing systems – to conduct multi-day tests, and to exercise redundancy continually.
The test team should be energetic, creative, and persistent in their efforts to “break the software."
	
	
	

	4.3.3
	The test environment – including any required simulation software – shall be assembled, verified, validated, baselined, and put under configuration management prior to use.
	
	N?
	Don’t know if you control this.

	4.3.4
	Defects in the test environment, discovered while testing the software product shall be documented and tracked in the software problem/failure reporting system.
	
	N
	Don’t know if you do this.

	
	Note: Guidelines and procedures for an effective problem/failure reporting system are described in D-8091, the JPL “Anomaly Resolution” Standard (JPL Rules! DocID 35506).

Configuration management of the test environment – including platform configurations plus test tools, procedures, scripts, and data – permits replication of the test environment in conjunction with diagnosing and fixing defects.
	
	
	

	4.3.5
	A test readiness review shall be conducted prior to the start of integration testing.
	
	N
	These are easy to do, but not sure if you do it.

	
	Note: A test readiness review is meant to ensure that the software under test, the test engineering products (test cases, procedures, tools, etc.), test environment, simulation software, and the personnel and resources are ready to begin the testing process.
In the event that multiple levels of testing are required, the software plan should identify the need for and timing of test readiness reviews.
	
	
	

	4.3.6
	Software integration and testing shall be performed on successfully tested software units in accord with the documented test design and procedures.
	
	N
	You probably do this, but not clear because of lack of TRR.

	4.3.7
	Test results shall be documented.
	
	?
	You must do this. In delivery documentation?

	
	Note: Test results should include both documentation of defects and proposed changes to improve the functionality of the software product.

Documentation and tracking of defects in both the software product and the test environment should begin at the start of integration testing.
Refer to D-8091, the JPL “Anomaly Resolution” Standard (JPL Rules! DocID 35506). The Multi-Mission Ground System approach is documented in “Testing Standards and Guidelines, Service Capability Development (SCD) Standard Practice” (DSMS 813-112).
	
	
	

	4.3.8
	When a defect is fixed or when new functionality is added to a build, regression testing shall be conducted to ensure that there are no undesirable side effects from the modification.
	8.4.4
	Y
	

	
	Note: The timing of regression testing and the number of modifications that are verified by a particular test must be determined by both the complexity and the maturity of the product under test.
	
	
	

	4.3.9
	Every planned test case shall be run from beginning to end before final acceptance.
	
	?
	depends on automated regression test suite?

	
	Note: In some circumstances, it may be attractive to conduct a test piecewise or to repeat only a segment of a previously executed test. When conducting only a segment of a test, care must be taken to ensure that the initial state of the product under test is identical to the end state of the product upon completion of the prior test segment.
	
	
	

	4.3.10
	A requirements verification matrix shall be maintained throughout the integration and test activities.
	
	N
	Needs formal requirements, and V&V plans.

	
	Note: A requirements verification matrix traces requirements to test cases and records the degree to which satisfactory execution of a test case verifies a specific requirement. Approved changes to requirements should be added to the requirements verification matrix.
	
	
	

	4.3.11
	An evaluation of product functionality, performance, test coverage, and interface compatibility shall be conducted and documented in a test report assessing test coverage and shall accompany each delivery.
	7.1
	Y
	May not be at the right level of detail.

