Redesigning the CLARAty 
Decision Layer/Functional Layer Interface

Based on contributions from (in alphabetical order): Caroline Chouinard, Tara Estlin, Dan Gaines, Mark Johnston, Issa Nesnas, Greg Rabideau

Edited by: Mark Johnston

Last updated: 8/27/2005

Contents
1The CLARAty DL/FL Interface


21 Overview


32 Alternatives


32.1 Distributed Objects


42.1.1 CORBA


62.2 Remote Procedure Call


62.2.1 XMLRPC


72.2.2 SOAP


82.3 Publish/Subscribe


82.3.1 NDDS


93 Conclusion


94 Appendix: CLARAty DL/FL Requirements


115 Appendix: Maestro-CLARAty Requirements for Roverware


126 Appendix: Ames DL/FL Interface


147 Appendix: MAV interface




Overview

This document describes the considerations leading to a decision for redesigning the CLARAty Decision Layer (DL) to Functional Layer (FL) interface. This effort was undertaken during the period March-August 2005 as a result of the desire to improve the existing interface. For a description of the CLARAty architecture and terminology, see http://claraty.jpl.nasa.gov.

[image: image1.wmf]
Figure 1: A schematic of the CLARAty architecture showing the Function Layer (FL) below and Decision Layer (DL) above. The mechanism for general communication between these layers is the subject of this investigation.

The focus here is on the protocol for communicating between the Dl and FL, not on the details of the specific functionality provided by either layer. Indeed, part of the purpose of the redesign is to provide a flexible and generic mechanism to support new classes of functionality in both the DL and FL.

The interface redesign was based on input from various sources and users of CLARAty, including:

· collected requirements from the CLARAty team

· requirements based on the Maestro-CLARAty interface for Roverware

· the Ames DL/FL interface

These sources are summarized in appendices.

1 Alternatives

We divided the various possibilities for the interface into three major categories:

  1. Distributed Objects (DO)
A distributed object approach attempts to make more or less transparent a collection of objects across multiple machines. Object references may be obtained by clients, and methods on those objects may be invoked, just as if the objects were local (or nearly so). This approaches tries to make software development in the distributed case look as much as possible like the single process case.

  2. Remote Procedure Call (RPC)
A remote procedure call approach provides a protocol for making distributed function invocations. A server provides an endpoint for a client, which makes a function call that looks like a local function call (or nearly so). The RPC mechanism provides some way for the function arguments to be packaged (marshalled) and sent to the server, and for the result of the function call to be packaged and returned.

  3. Publish/Subscribe (P/S)
This is a messaging protocol in which a data source publishes data of some kind, and a client subscribes to receive that data. The client is notified when new data of that kind is available, typically by a callback mechanism of some sort. Two way communication is accomplished by having both sides of the interface publish and subscribe simultaneously. Typically P/S systems support many subscribers at once.

1.1 Distributed Objects

General pros of DOs:

· Would look just like programming in FL

· Good tool support

· Strong type checking

General cons of DOs:

· Efficiency of CORBA when have large number of interface points (i.e., how does it scale)

· May be difficult to update IDL when functionality changes 

· May be ok since high-level

· Could be auto-generated

· Could be considered an advantage -- minimizes the number of points you have to modify

· Updating IDL in CORBA may be even easier than other approaches 

· If make network interactions transparent encourages programmer to use it in improper ways 

· E.g., hiding latency

· But, this also applies to any method that makes network transparent 

· Learning curve 

· May not be as bad if auto-generate code

Note: due to the complexity of DO implementations, we will not try to build one ourselves.

1.1.1 CORBA

CORBA is a standard of which there are many implementations. See the Object Management Group (OMG) website for more general information about CORBA (http://www.omg.org)

The specific version of CORBA under consideration is TAO (http://www.theaceorb.com/index.html). This version is open source and specifically addresses near real time usage and control system applications.

Pros

· Well established, could get support for TAO (commercially available from http://www.ociweb.com/)

· Has all features we need (could hide ugliness of CORBA-specific calls)

· TAO supports VxWorks and has real-time guarantees

· TAO is highly efficient for Orbs

· Object by Value support: 

· a copy is made and a reference to the local copy is returned

· client uses local copy for data and methods (requires implementation)

· supported by TAO (C++ only), not transparent (local/remote objects look different)

Cons

· Perceived complexity of implementation

· Risk of CORBA datatypes "diffusing" into codebase

Other Experiences

We spoke with other users at JPL who have evaluated CORBA or used it in the past. Their opinions are summarized here.

1. Distributed Avionics (Rich Petras)
The reasons he gave on why they didn't like CORBA were the following.

1. Each distributed piece of hardware shouldn't be tied too closely to other pieces.  They didn't want the code to change for one piece when the code changed for another piece. 

2. They wanted messages to be self-described so can be read by a generic reader

3.They didn't want to be tied to yet another package/tool that will have to kept up-to-date.  They want to minimize third party dependencies.  For this reason they are not looking at going back to sockets (vs. XML-RPC which is what they had selected originally).

4. Thought CORBA had more complexity than they needed.

The document the Distributed Avionics task put together (which contains info on what communication mechanisms they looked at and some general reasons why they went with XML-RPC), here is the link: http://robotics.jpl.nasa.gov/people/petras/distav/peer_review/DistAv_Overview.pdf. Pages on the communication options they looked at include 6-11.

2. MDS (Kirk Reinhotlz)
  1. Complicated - Running the ORB etc added yet another hassle and yet another random process that if it dies it kills your application.

  2. Type diffusion - CORBA has it's own types, and they tend to diffuse into your code.  It got to be something of a hassle to isolate everything everyplace, somewhat diminishing from the utility of CORBA in the first place.

  3. Performance - Circa '01 there weren't any ORBS available (at least at reasonable cost) that had good performance. It appeared to me that they all blindly serialized etc, even when more efficient zero-copy mechanisms could have been used had the ORB noticed everything is on the same machine.  I've heard this has been fixed in at least some of the $$ orbs, but I don't know.

  4. Big solution for little problem - All we really wanted to do is send bits from here to there.  CORBA wants to provide discovery, naming services, standard service API's, etc. etc. etc.

The CORBA implementation they considered was TAO.

Kirk pointed out the following website which includes a number of quantitative comparisons of different systems: http://www.atl.external.lmco.com/projects/QoS/.

1.2 Remote Procedure Call

RPC mechanisms provide distributed function calls but are not object oriented. However, functions arguments and results may be objects, depending on the framework used. We considered two standard frameworks: in both, functions arguments and results are packaged into an XML represention for transmission on the network. 

The following sections cover XML-RPC and SOAP, respectively. One person's comparison make interesting reading on this topic: it can be found at http://weblog.masukomi.org/writings/xml-rpc_vs_soap.htm.

1.2.1 XMLRPC

Refer to the following for more details about XMLRPC:

· http://www.xmlrpc.com/
· http://xmlrpc-c.sourceforge.net/xmlrpc-howto/xmlrpc-howto.html
· http://xmlrpc-c.sourceforge.net/
Pros

· Simple, smaller learning curve

· Closer than publish/subscribe in looking like programming in FL (but not as good as DO)

· Strong type checking

· Easier to keep up with newer releases

Cons

· Complexity with dealing with underlying OO system

· More auto-generation of code

· Point-to-point where have to know where all points are 

· DO and publish/subscribe make this more transparent and thus more flexible 

· XML representation has run-time inefficiency (however, some implementations provide data compression which alleviates this)

· Limited data types 

· Will have to recreate a large number of FL data types 

· Communication is always over sockets so inefficient on one processor (or we would need to change)

1.2.2 SOAP

SOAP was designed for web services, i.e. software access to functionality exposed via web servers. It is a W3C standard: see http://www.w3.org/TR/soap/. The current version is 1.2.

SOAP is a request/response RPC mechanism. Requests are wrapped in XML, and so are responses. There are mechanisms to serialize/deserialize objects (both automated and customized if desired), and to compress the XML. Tools like Apache Axis wsdl processing tools will generate stubs and skeletons from the service description files, which makes use of the mechanism easy though not transparent.

There is an Apache open source implementation at http://ws.apache.org/axis/ (Java and C++).

Another version is gSOAP: this link is to their "features" page, which is very thorough: http://www.cs.fsu.edu/~engelen/soapfeatures.html. gSOAP provides platform-independence (Windows, Unix, Linux, Pocket PC, Mac OS X, TRU64, VxWorks), and a standalone multithreaded SOAP server with a very small memory footprint and high efficiency (designed for embedded systems).

How objects get passed:

· SOAP copies the data (and can do a deep copy)  

· client needs implementation for the methods

· each client can have a different implementation of methods

· supports some type of inheritance when passing objects

SOAP mechanisms include:

· asynchronous calls

· broadcast (fire-and-ignore, send message to multiple clients and not require responce, may want to check on if it guarantees receipt)

· synchronous calls

· messaging with attachments (where attachment is binary, a mime-type encapsulation)

· can compress XML messages

· handles all the basic primitives

WSDL (Web Service Description Language) is an XML description of SOAP services -- what message types are, parameters, returns, etc. WSDL can be generated automatically from code (you tag the calls you want to commit). For Java, can just drop the .java file into its generator. There are also programs for C++ that do the same thing.

Pros

· Can define more complex objects then XML-RPC allows

· Server can tell you what methods/data available (via WSDL, which provides an XML description of the services available)

· More OO than XML-RPC

Cons

· Inefficient on same processor

· Changes often – harder to maintain with new releases

· Some features are not fully spec'd – we would need to implement a number of things

· Some implementations/platforms not inter-operable (e.g., Windows and Sun)

1.3 Publish/Subscribe

The specific implementation being considered is Network Data Distribution Service (NDDS), a commercial product from RTI, Inc. (http://www.rti.com/products_ndds.html). NDDS implements an OMG standard DDS (http://www.omg.org/cgi-bin/doc?ptc/2003-07-07), which is based on the RTI implementation.

1.3.1 NDDS

Pros

· Good for joystick/tele-operation

· Good for distributed stream of data to multiple clients

· Real-time guarantees

· Faster then TCP – uses UDP

· Best run-time efficiency across network vs. CORBA

· Simple, easy learning curve

· Already using with Robonaut project

Cons

· Expensive and don’t get source 

· Would likely have to pay for support 

· Large number of things to change when change system

· Does not have strong type checking

· Will be difficult to send large items across interface (e.g., images)

· Less efficient on same processor vs. CORBA

Other Experiences

Issa Nesnas reported that NDDS was used in the past (7 years ago) on Rocky7. It was dropped largely because of the expense of the commercial licensing required.

2 Conclusion

Based on the above considerations, we selected two options to investigate in detail (5/18).

1) CORBA and we use wrappers to hide CORBA ugliness and CORBA type diffusion

2) SOAP and we create a C interface for the FL that can be called remotely

These selections include a distributed object approach and an RPC approach.  We threw out the publisher/subscribe approaches as both SOAP and CORBA provide notification/broadcast services that subsume the capability and the publisher/subscribe approaches we are aware of do not provide strong type checking.

Gregg Rabideau implemented a comparison application using both approaches (6/27). This provided sample code for exactly the same application, and thus provided an ideal basis for a direct comparison. Gregg's slides are available here <<link? put on CLARAty site??>>.

The summary from Gregg's comparison is as follows:

· Both require user to define an interface

· Both generate lots of code

· CORBA is more natural for pass-by-reference

· SOAP is more natural for pass-by-value

· CORBA has a high learning curve

· SOAP may require more work to “shoe-horn” in legacy code

· SOAP is inefficient (copies, xml) but uses a simpler mechanism than CORBA (I’m assuming)

The overall conclusion is to proceed with the TAO (real-time CORBA) implementation for CLARAty.

3 Appendix: CLARAty DL/FL Requirements

<< Refer to most recent version on web site?? >>

Requirements for Interface between the CLARAty Decision Layer (DL) and Functional Layer (FL)

Tara Estlin, Dan Gaines, Caroline Chouinard, Issa Nesnas, ...

April 27, 2005

Requirements have been divided into three levels:

· Level 1: Items that would be necessary to bring us back to the current level of functionality we have at JPL

· Level 2: Items that are of high importance to implement this year and/or that are needed to support one of the the JPL DL Task FY05 end of year demo, the Ames Plexil Executive Task, or other users of the current Ames interface

· Level 3: Items we want for the future but are not necessary this year

Open issues that still need to be considered and may become requirements are also listed.

Level 1
· The interface shall support commands sent from Decision Layer systems to modules in the Functional Layer. 

· The interface shall provide a means of associating commands sent from the DL with command status. When a command is sent to the Functional Layer a unique id will be generated and sent back to the DL. 

· Commands sent from the DL to the FL may include a list of parameters (or arguments). 

· The interface shall support providing DL with updates at requested intervals where intervals may vary.  

· Updates may be associated with commands but can be independently requested.  

· The FL shall inform the DL of command completion and success/failure status of a command.

· The interface shall support a single lookup/query for update values.

· The interface shall be non-blocking. 

· The interface shall prevent clients from waiting in a line if other clients are already talking to FL or DL.  

· The interface shall support executing commands in parallel.   

Level 2
· Command parameters may be of arbitrary data types (e.g., int, real, string, binary).

· Update values may be of arbitrary data types (e.g., int, real, string, binary).

· Priorities may be attached to commands or updates.

· The FL shall support event-based updates, where FL only sends an update when update value changes. A request for an event-based updated may include a tolerance value that specifies what constitutes a change. (E.g., only update rover position when position has changed by 0.5m).  

· The interface shall minimize the number of locations that must be modified if a change or addition is made to the DL/FL API.

Level 3
· The interface shall support DL commanding FL at different levels of FL hierarchy. 

· If the same update is requested by more the one command in the DL, the FL will use the smallest requested interval to send updates over the time periods where those commands overlap

· The interface shall support queries from the DL to the FL that ask for predicted resource usage values for certain commands.

· The interface shall support the DL and FL running on a) same processor, b) different processors but same bus or c) different processors on different buses.

· The DL shall be able to poll FL at any time for command status. (Could be moved to Level 2 – Check if Plexil needs, L2 likely does)

· The DL shall have access to additional state information such as associating resource usage with specific commands (e.g., this science operation used this much RAM).

4 Appendix: Maestro-CLARAty Requirements for Roverware

Roverware is basically the combination of Maestro, the CLARAty Functional Layer, and the ROAMS high fidelity rover simulator.

Desired capabilities of the interface are:

· Maestro actions should present an immediate response from the CLARAty controlled rover. 

· Should be seamless (no start up time, no save to file time) 

· Interface accepts continually incoming commands.

· Use a server that queues up commands and executes them on the instantiated rover 

· Command interfacing options

1. Text-based outputs via sockets/file

· XML-RPC (Preferred, simple, 3rd party implementation)

· Other string outputs

2. Swig wrapped Rover class (some more overhead)

· JNI interface.

· TCL/PYTHON interface (like roams) 

· Common Activity/Command Dictionary 

· CLARAty supported rovers can export their commands to the world and the Maestro interface can pick these up easily for a particular rovers.

· Dictionary specifies with what types of parameters the command can be called.

· Should be done with XML. 

· Automatic Code Generation of Command Dictionary and Interface from rover header file 

· easy to update interface when API changes

· easy to add additional rovers 

· Closing the loop with rover command status reports from CLARAty 

· Three options:

1. Send one command, block on command, and return success status of issued command.

2. Send multiple commands and return status back through interface when any command completes.

3. Send multiple commands and don't return status until status is requested by Maestro.

· Communication could again be done via XML-RPC. 

· Interactive or Plan mode 

· Interactive, pseudo-"joysticking" capability from Maestro.

· Plan, send a sequence (or more complex execution tree) from Maestro 

· Ability to control multiple rovers (***maybe farfetched for now) 

· But make sure multiple instances of interface can run.

5 Appendix: Ames DL/FL Interface

Based on email from Clay Kunz <ckunz@mail.arc.nasa.gov> 13 April 2005

Basically, the DL that we use is totally outside of claraty. This is partially for historic reasons, because originally the bulk of the DL we were using was written by people who couldn't see CLARAty because of ITAR. So our interface is a really sharp line between what's inside and what's outside. 

The interface is a string-based command/value request system that uses CORBA for the IPC. Using CORBA for this is really huge overkill, because the remote function calls that we use only take strings and ints as their args & responses, and there's only 4 functions defined in the interface: 

int doCmd(string cmd);    // blocking, returns a cmd_id 
int startCmd(string cmd); // non-blocking, returns a cmd_id 
int checkStatus(int cmd_id);   // returns an enum, basically 
string getValue(string request, Time_Value& timestamp); 

Because the programmatic interface is so simple, the real interface that describes what you can & can't do is given by the "command dictionary" that describes all the legal strings (commands and requests) you can pass in. 

The command and request strings are of the form: 

"command_name arg1=value1 arg2=value2 arg3=value3..."

or, similiarly

"request_name arg1=value1...." 

commands are things like "Drive" or "Navigate" and requests are things like "RoverGetPosition" and "ImageAcquire" 

When the arguments to a function are not easily represented by strings or numbers, we encode them using Parse_Block objects, so you wind up with something like

CameraSetParams name="hazcam_front_left" params="{shutter=300; gain=150;}"

which then gets parsed on the server side by the functions in the Parse_Block class. 

On the server side, a class that wants to publish a command or value request makes a call into a command dispatcher singleton object that is serves as a registry and is attached to the thing that services requests that come from the CORBA layer. Then when the command comes in from the client side, the dispatcher looks up the command name in its table, and calls the function associated with it, passing in the whole command string (so it's up to the registered function to do the parsing).

For example, the k9 code that maintains the k9 locomotor object registers a "Drive" command like:

Cmd_Dispatcher *disp = Cmd_Dispatcher_Singleton::instance(); 

disp->add_cmd_func("Drive", DriveCmd, "Drive " 
                     "mode=[string opt] " 
                     "heading_change=[double opt] " 
                     "distance=[double req] " 
                     "crab_direction=[double opt] " 
                     "max_rotate=[double opt 1.0] " 
                     "max_velocity=[double opt 0.1]");

where "DriveCmd" is a pointer to a function: 

cmd_t DriveCmd(const Cmd_String& cmd) { 
 Drive_Command driveCmd; 

  bool found; 
  driveCmd.distance = cmd.get_value("distance", 0.0, &found); 
  if (!found) 
    throw std::runtime_error("Drive error=\"Required parameter " 
                             "'distance' omitted\""); 
  // ... and so on -- this command ultimately parses all the fields out 
  // into the driveCmd object, and passes that off to the locomotor 
} 

Now having said all that, I wouldn't recommend this exact system for the DL/FL interface for CLARAty. At first, I was really opposed to using a string-based interface, but it turned out to be quite nice, because it allows for a really loose coupling between the client and server. The server can add new (optional) params for a command, for example, without the client having to be recompiled for the new class definition. On the other hand, I would probably at this point want to use something like XML to encode the messages rather than Parse_Block. Even then, I probably wouldn't want to use CORBA, because it's overkill to use CORBA for a simple string-based inteface. And doing a thick CORBA interface, where you can for example get the remote Locomotor object and make calls directly on it seems like a bad idea - at the very least we'd have to make a really careful study about what objects get exported.

Finally, this is assuming we need to have a network-exposed interface. For us this made sense because the FL always runs on a laptop on the rover, and the DL often is better suited to running off board on machines with more memory, CPU speed, and so on. If we want to do everything in one process, then that's another discussion altogether.

6 Appendix: MAV interface

This is a high level description of the another CLARAty interface to Maestro (called MAV here), which was designed for another project.

Purpose: allow CLARAty FL to use MAV viewer for visualization of arm operation

CLARAty makes calls to MAV (MAV does not make calls to CLARAty).

CLARAty calls are made through XML-RPC

· Uses HTTP to transfer calls/results

· Supports bool, int, double, string, date, array (of any supported type), struct (keys are strings, values may be any supported type) binary (base64) 

· according to tutorial: Unfortunately, since XML-RPC forbids the use of timezones, date is very nearly useless. 

· Client must assemble/dissasemble the XmlRpc values types for the arguments it wants to pass.  Server must pull these arg out of the XmlRpc values it receives.  Similar behavior for passing return values.

· On serverside, must register procedures to be exposed with server

CLARAty DL/FL Interface

p. 16 of 16

