By Michael Mossey – November 2002

Note: this writeup mainly considers the issue of avoiding dependencies between sockets and the data classes, and presents six or so choices. It’s not written here yet, but next I will consider whether the following issues have any additional impact on these choices:

· The ability to unserialize an object of unknown type, or an object known to belong to a hierarchy of classes, but unknown as to which specific derived class

· Writing object serialization functions in such a manner that objects composed of other objects can call their serialization functions. E.g., if an object of class A is composed of objects of classes B and C, and we wish to write methods for (un)serializing A, that we can write that in terms of B’s and C’s existing methods

On CLARAty serialization through sockets

Consider these modules:

image – contains data classes that represent images

sockets – contains classes that implement functionality of reading from and writing to sockets

matrices – contains data class that represent matrices

We write programs that use these modules. We might write these programs:

program A: uses images, but does not send them over sockets

program B: uses matrices, but does not send them over sockets

program C: uses images, and does send them over sockets, but doesn’t use matrices

program D: uses sockets for sending some simple character data

On CLARAty, we want modules to have as little dependency on each other as possible, so that a program that links in the image module doesn’t have to link in sockets, and vice-versa.

We desire that program A can be made by linking against only the image module. Of course program A makes no calls into the sockets or matrices modules, but that is not enough to guarantee that we don’t have to link against them, for we do have to link against image, and if image makes any calls into sockets or matrices, then the linker would require us to bring them in.

Likewise, we desire that program B can be linked against matrices only; program C can be linked against images and sockets only, and program D linked against sockets only.

Possible solutions

The basic problem: for streaming say images to sockets, we need to write some code that knows about both images and sockets. This code could go in the image module and make calls into the sockets module, but then image would become dependent on sockets. This code could go in the sockets module and makes call into the image module, but then sockets would be dependent on image. So the code has to go somewhere else.

Solution 1: code goes in the application

main()

{

 Image img;

 ... do something that sets up img... ;

 Socket s(6666);

 char* buf = img.serialize();

 s.send(buf);

 delete [] buf;

}

Discussion: the above assumes that Image’s have the ability to serialize themselves into a simple character buffer, which then gets passed into the socket send function.

Point: the code for serializing Image will go in the image module, meaning that image.o will have more code in it, slightly bloating the size of executables that use Images but never serialize them.

Solution 2: code goes in the application and we use one helper class

Here the helper class is called Message which is assumed to live in a new module, called message.

main()

{

 Image img;

 ... do something that sets up img ... ;

 Socket s(6666);

 Message* msg = img.serialize();

 s.send(msg);

 delete msg;

}

I’m not sure what the tradeoffs/advantages are compared to using a simple character buffer.

Another way to write solution 2

main()

{

 Image img;

 ... do something that sets up img ... ;

 Socket s(6666);

 Message msg;

 msg << img;

 s.send(msg);

}

Note that the code for operator<< has to go in the image module, not in the message module, to avoid making message dependent on image.

Point: everything that can be serialized will be dependent on message, but message must not be dependent on everything that can be serialized. Therefore message must be some kind of generic interface: (1) it could be a buffer for characters that only contains the characters but is not aware of what they represent (2) it could be an abstract base class (ABC) that the indivdual modules derive from.

So solution 2 introduces a new module that nearly everything depends on. This may or may not be a bad thing. But we already have “share”; it might be nice to put message in there.

Solution 3: Code for serializing an Image is a friend function or friend class of Image, and lives in a different module

This is remiscent of the current socket_messages module. We could put the friend functions for all modules into socket_messages. The problem is that socket_messages then depends on all other modules. So we could create a different “auxially” module for every type: an image_messages module, a matrices_messages module, and so on for every data module, but that would be module bloat.

Solution 4: avoid introducing a dependency by making data objects derive from an abstract base class

In the share module would go this:

class DataObject

{

 virtual char* serialize() = 0;

 virtual void unserialize(char*) = 0;

};

Then image would include:

class Image : public DataObject

{

public:

 Image();

 ... etc etc ...;

 virtyal char* serialize();

 vittual void unserialize(char*);

}

Socket would define:

class Socket

{

public:

 Socket& operator<<(const DataObject& obj)

 {

 ... can write this making calls to obj.serialize()

 and obj.unserialize() ... ;

 }

}

main()

{

 Image img;

 ... do something that sets up img ... ;

 Socket s(6666);

 s << img;

}

Note that sockets does not become dependent on image, only on the abstract base class declared in share. And image knows nothing about sockets.

Point: with this method, there is no need for an intermediate buffer or helper class, which could provide an advantage later when we want implement an interface that allows streaming in small chunks, and removes at least one class from the picture. Also an expression like ‘ sock << obj1 << obj2 << obj3 ‘ would not require the creation of a buffer or buffers that store the entirely of obj1, obj2, and obj3 all at once.

Solution 5: a variation on solution 4, making the Socket from an abstract base class

In share goes

class StreamingDevice

{

public:

 virtual void send(char*, int) = 0;

 virtual char* receive() = 0;

}

Then in sockets goes

class Socket : public StreamingDevice

{

public:

 virtual void send(char* , int);

 virtual char* receive();

}

In image.cc goes a friend free function of Image:

StreamingDevice& operator<<(StreamDevice& sd,

 const Image& img)

{

 ... code that calls sd.send() after serializing the

 image ... ;

}

In this solution, we don’t have change the data classes at all...we don’t have to inherit them from a common base class for example. This may make the data classes appear to be slightly lighter-weight, such as sometime in the future when someone attempts to separate a data class from the share module they won’t have to take out all the derivations from DataObject.

Solution 6: make Socket a kind of IOStream

This is related to solution 5. The interface to Socket is abstracted as a kind of stream, meaning that classes that use it will be dependent on iostream but not inherently dependent on socket. A co-worker suggested this as a possibility; he has created his own iostreams before, but personally I don’t immediately know what’s involved.

