
Path_Generator/Trajectory/Locomotor Interface Definition (DRAFT) Author: Thomas Howard Date: 8/1/2006

Path_Generator/Trajectory_Generator/Locomotor
Interface Definition (DRAFT)

Thomas Howard
8/1/2006

Purpose: To go over the design of the new Trajectory class and
revisions to the Path_Generator, Trajectory_Generator, and

Locomotor classes. The new design will allow for easy integration of
the Trajectory_Generator and the Lattice_Planner into CLARAty for

path planning and path following.

Path_Generator/Trajectory/Locomotor Interface Definition (DRAFT) Author: Thomas Howard Date: 8/1/2006

Traj

Traj_Path Traj_Controls

Traj_Controls_Continuous
(parameterized v,ω)

Traj_Controls_Discrete
(sampled v,ω)

Traj_Path_Discrete
(sampled x,o,…)

Trajectory Class: A general trajectory definition is desired so that
sampled and continuous paths can be represented with the same data
structure. The proposed structure distinguishes between path and
controls, where the path is defines the vehicle position (x) and
orientation (o) and the controls define the vehicle linear (v) and angular
velocities (ω). Because a path cannot generally be described by a
parameterized function (due to nonholonomic constraints), only a
discrete representation exists. The Trajectory class will have an
interpolation scheme which will be used for both the path and controls.

Trajectory_Generator Class: The Trajectory_Generator will take
in the vehicle model and the initial and terminal states to find a
continuous path between the two boundary states. The linear and
angular velocity controls in the Trajectory_Generator are defined to
be continuous parameterized functions, so they can be outputted
directly into the Traj_Controls_Continuous structure. Since a
sampled forward solution is required to determine the error of the
terminal boundary state, sampled representations of the position,
orientation, and controls will have already been calculated.
Therefore, the sampled position, orientation, and controls
information can be stored in Traj_Path_Discrete and
Traj_Controls_Discrete at no additional cost. This leaves the option
to execute the commands open or closed loop at the locomotor
level.

Trajectory_Generator Class Interface: The trajectory generator
will generally take in a pair of boundary states and return a
structure (TrajStructure) containing all of the Traj types:
TrajSructure Trajectory_Generator(Initial_State,
Terminal_State): Determine a path from the Initial_State to the
Terminal_State given a vehicle model and return the discrete and
continuous trajectories (path and control).

Trajectory_Generator

Traj_Controls_Continuous
(parameterized v,ω)

Traj_Controls_Discrete
(sampled v,ω)

Traj_Path_Discrete
(sampled x,o,…)

Initial_State Vehicle Model (XML)

Terminal_State

Path_Generator/Trajectory/Locomotor Interface Definition (DRAFT) Author: Thomas Howard Date: 8/1/2006

Initial_State Vehicle Model (XML)

Terminal_State

Trajectory_Generator

Path_Generator

Lattice_Planner

Traj_Controls_Continuous
(parameterized v,ω)

Traj_Controls_Discrete
(sampled v,ω)

Traj_Path_Discrete
(sampled x,o,…)

Path_Generator Class: The
Path_Generator is a class which generally
determines a trajectory between two
boundary states for a specific vehicle
model. We can use either the
Lattice_Planner, the Trajectory_Generator,
or another planner to determine these
complicated motions. The idea is simply
to have the same output using the Traj
class for all types of planners.

Path_Generator Class Interface: The
interface to the Path_Generator still needs
to be determined. Clearly there must be a
method to pass in the initial and terminal
boundary states, the vehicle model, a cost
map (for obstacle avoidance)

Other Planners

Cost_Map

Path_Generator/Trajectory/Locomotor Interface Definition (DRAFT) Author: Thomas Howard Date: 8/1/2006

Motor

Locomotor

move(Traj_Path_Discrete, velocity, acceleration)

Traj_Controls_Continuous
(parameterized v,ω)

Traj_Controls_Discrete
(sampled v,ω)

Traj_Path_Discrete
(sampled x,o,…)

Locomotor Class: The locomotor module takes in the target path or target controls and 1) executes them open loop (using
Traj_Controls_Continuous or Traj_Controls_Discrete), 2) follows a path at a given velocity and acceleration closed loop (using
Traj_Path_Discrete) or 3) follows a path closed loop (using Traj_Path_Discrete, Traj_Controls_Discrete). The locomotor retains
the ability to execute simple geometric controls (like arcs) and has the capability for path following of a geometric path.

move(Traj_Path_Discrete, Traj_Controls_Discrete)

move(Traj_Controls_Discrete)

move(Traj_Controls_Continuous)

Feedback
Control

Target State(s)

Wheel
Velocities

Calc.

Current State
Information

Locomotor Class Interface: The specific version of the Traj class used in move function of the locomotor can be used to
determine which type of movement is desired. Specifically:
locomotor.move(Traj_Path_Discrete, velocity, acceleration): Follow path closed-loop (defined by Traj_Path_Discrete) at a
trapezoidal velocity profile defined by velocity and acceleration arguments. Since the path are a sampled sequence of positions and
orientations, the Traj interpolation scheme is used to determine the intermediate points.
locomotor.move(Traj_Path_Discrete, Traj_Controls_Discrete): Follow path closed-loop (defined by Traj_Path_Discrete) at a
given velocity profile (defined by Traj_Controls_Discrete). Both the path and the controls are sampled sequences, so the Traj
interpolation scheme is used to determine intermediate points.
locomotor.move(Traj_Controls_Continuous): Follow controls open-loop (defined by Traj_Controls_Continuous).
locomotor.move(Traj_Controls_Discrete): Follow controls open-loop (defined by Traj_Controls_Discrete). Since the controls
are a sampled sequence of linear and angular velocities, the Traj interpolation scheme is used to determine intermediate points.

	Path_Generator/Trajectory_Generator/Locomotor Interface Definition (DRAFT)��Thomas Howard�8/1/2006

