[image: image5.wmf]Manipulator_Model

Manipulator

Ctrl_Motor

R8_Motor

R8_Arm

R8_Arm_Model

Device

Device

Coordinated

Motion_Generator

Mechanism_Model

Motor_Group

Manipulator_Model

Manipulator

Ctrl_Motor

R8_Motor

R8_Arm

R8_Arm_Model

Device

Device

Coordinated

Motion_Generator

Mechanism_Model

Motor_Group

CLARAty Document - Mechanism Model Requirements
 12/29/2004

CLARAty

Mechanism Model Software Requirements and Design Document

Revision:
1.0 (Draft)

Date:
December 28, 2004
Prepared By:

Document Custodian:

Won S. Kim

Issa A.D. Nesnas

Issa A.D. Nesnas

Hari Das Nayar

Antonio Diaz-Calderon

Contributors
Anne Wright

(Ames Research Center)
Raymond Cipra
(Purdue University)
Max Bajracharya
(JPL)
Daniel Clouse
(JPL)

Paper copies of this document may not be current and should not be relied on for official purposes. The current version is on the CLARAty website at http://claraty.jpl.nasa.gov under Software/Packages/Mobility and Manipulation

[image: image1.png]
Jet Propulsion Laboratory

4800 Oak Grove Drive

Pasadena, CA 91109-8099

This Page Intentionally Left Blank

CLARAty Mechanism Model Requirements Document

Signature Sheet

Approval

Clay Kunz – Center Lead, Ames Research Center

Date

Stergios Roumeliotis – Center Lead, University of Minnesota

Date

Reid Simmons – Center Lead, Carnegie Mellon

Date

Antonio Diaz Calderon - JPL

Date

Hari Das Nayar - OphirTech

Date

Won S. Kim – Activity Lead, JPL

Date

Issa A.D. Nesnas – Task Manager, CLARAty

Date

Revision:
1.0 Draft

Date:

December 29, 2004
Table of Contents

61.
Introduction

2.
General Requirements
7
3.
Mechanism Types:
7
4.
Mechanism Model Software Elements
9
5.
Coordinate Frames and Transforms
15
6.
Model Data Input Requirements
16
7.
Kinematic algorithms
17
8.
Constraint Management
17
9.
Software Interface Requirements
19
10.
Manipulator_Model class
20
11.
Wheeled_Locomotor_Model class
20
12.
Legged_Locomotor_Model class
21
13.
Manipulator and Locomotor Control classes
22
14.
Usage Instantiation Model
22
15.
Performance Requirements
23
16.
Further Discussion:
24

Revision History

	Revision
	Date
	Description
	Author

	0.1
	02/02/04
	Initial document to capture meeting notes
	W. S. Kim

	0.2
	02/26/04
	Added provision for legged mechanisms; collision modeling; and parameter file
	W.S. Kim

	0.3
	03/01/04
	Revised collision models and added kinematic model methods
	W.S. Kim

	0.4
	04/26/04
	Restructured the document into functional and interface reqs; added figures
	W.S. Kim

	0.5
	05/14/04
	Added definitions for body and joint; add coordinate tree; usage models; and capture items of disagreement
	I.A. Nesnas

	0.6
	06/09/04
	Restructured document; several additions to all sections; added modeling info from A. Diaz; design diagrams from H. Nayar and W. S. Kim
	I.A. Nesnas

	0.7
	06/23/04
	Added introduction, body tree section, closed chains, body tree and bounding shape diagrams, and update usage model section
	I.A. Nesnas

	0.8
	06/25/04
	Added body joint relationship diagram and minor clean up and reorganization of sections
	I.A. Nesnas

	0.9
	10/08/04
	Added constraint management section from R. Cipra and reviewed several sections
	H. Nayar

	1.0
	12/30/04
	Prepared document for review; added cover pages, redid all figures; table of contents, added missing figures from 0.9; cleaned up styles and updates sections
	I.A. Nesnas

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

1. Introduction

What is proposed?

A unified approach for modeling mechanical properties of a robotic system for use by the CLARAty
 on-board software. The implementation of these requirements will provide the CLARAty architecture with a more generic infrastructure for mechanism modeling. The modeling software covers mobility mechanisms, robotic arms, rover masts, mechanical legs, and so on. The modeling software will provide the necessary information for real-time on-board computation of kinematics, dynamics, and collision prediction.

Why is it proposed?
 A unified modeling approach has the following advantages:

· Provides centralized storage and processes for managing model information. This includes creation, deletion, update, extension and reconfiguration of the mechanical models.

· Ensures consistency of the model information for use by multiple algorithms. As a result, algorithms will more easily be integrated into the software architecture.

· Reduces duplication in model representation between rover mobility and manipulation software.

· Enables the development of generic algorithms for forward, inverse, and differential kinematics. In the absence of specialized versions, the generic algorithms provide out-of-the-box functionality.

· Supports specific implementations to override generic algorithms whenever appropriate for optimal performance.

· Specific implementations of kinematics algorithms can be verified by comparison with generic implementations.

What is contained in this document?
This document contains software requirements for developing a unified mechanical model representation and accompanying algorithms for analyzing the model. It also describes the interaction of these models with the rest of the on-board robotic software.

This document is divided into several sections covering general requirements, mechanical models and their components, relationships between these components, user input requirements for generating the models, and usage of these models by the control software.

In this document, the term “mechanism” refers to any mechanical system and does not imply a closed loop mechanical chain.

2. General Requirements

2.1. The software shall separate mechanism models from mechanism control. This allows manipulator and vehicle kinematics to be used by client software and tested independent of hardware.

2.2. The software shall support the following computations for the mechanism model:

2.2.1. Kinematics computations:

2.2.1.1. Forward, inverse, and differential kinematics

2.2.2. Quasi-static computations of forces and torques considering:

2.2.2.1. Joint flexibility (stiffness)

2.2.2.2. Gravity force and other applied forces

2.2.2.3. Gravity deflection

2.2.2.4. Environmental contact constraints (position, force, torque, and stiffness)

2.2.3. Resolution of simultaneous multiple kinematics constraints.

2.2.4. Collision detection.

2.2.5. Dynamics computations shall not be supported in the initial implementation. However, models shall support future extensions for dynamics computations.

2.3. The software shall allow over-riding of generic algorithms with specialized algorithms for specific kinematics systems.

3. Mechanism Types:

3.1. The mechanism model software shall handle multi-body mechanisms which include:

3.1.1. Serial manipulators:

Multi-degree of freedom robotic arms, masts, and legs (e.g., a 5-dof arm with a turret gripper carrying multiple instruments)

3.1.2. Simple closed-chain mechanisms:

Four- and six-bar planar mechanisms
3.1.3. Wheeled locomotors:

Multi-wheeled mechanisms with different drive and steering configurations. This includes fully-steerable, partially-steerable, and skid-steerable mechanisms (e.g. Rocky 8’s six-wheel drive six-wheel steering rocker bogie mechanism, Rocky 7’s all-wheel drive front wheel steering mechanism, SRR’s four-wheel rocker mechanism, and ATRV’s non-steerable wheels)
3.1.4. Legged locomotors:

Multiple legs attached to a body (e.g. LEMUR and Athlete robots). Legged locomotors that require dynamics computation will currently not be supported (e.g. two-legged humanoid robots)
3.1.5. Composite mechanisms:

Any combination of the above types (e.g. a rover with a robotic arm; a mobile robot with both wheels and legs)

3.2. The mechanism model software shall not handle parallel and hybrid kinematic structures directly. However, for simple parallel structures, it will be possible in the mechanism model software to model this class of structures as tree topology kinematic structures by breaking closed chains and solving for the closed chain system using constraints.

3.3. To verify the viability and fidelity of the mechanism model software package, models of the following shall be developed and tested with the new approach:

3.3.1. Rocky8 kinematics with instrument and mast arms

3.3.2. SRR mobile robot

3.3.3. Lemur six-legged walking robot

3.3.4. PUMA 560 industrial robot in a simulated work-cell

3.3.5. Combined wheeled and legged robot

3.3.6. Robotics Research Inc. torso plus two-arm manipulator

3.3.7. Four-bar planar mechanism

4. Mechanism Model Software Elements

4.1. The software shall capture the mechanism and its associated coordinate frame transformations in a tree topology as shown in Figure 1. Mechanisms shall be represented using open-loop chains. Using a tree topology considerably simplifies the software infrastructure and enables both flexible and efficient processing.
4.2. The top-level software object for the package shall be Mechanism_Model. Mechanism_Model shall provide the interface to the mechanism model database for creating, deleting, modifying, and querying, and performing kinematic analysis. A generic C++ standard template library-(STL) like Tree software object contained in Mechanism_Model shall be used to model the structure of the mechanism.

4.3. The mechanism tree shall consist of a number of bodies connected to one another via joints. A joint connects a body to its parent body. The body will be denoted by ME_Body (short for mechanical element body). ME_Joint (short for mechanical element joint) will model the joint. The Tree object in Mechanism_Model will be templatized to be a tree data structure containing objects of type ME_Body (see Figure 2). The ME_Joint object will be contained in ME_Body (i.e. a member of ME_Body).
4.4. Closed loop chains such as a four-bar mechanism, for example, shall be handled as an open loop chain with either a position constraint between Link2 and Link3 or non-linear joint constraints on the non-actuated joints (see Figure 3).
4.5. The mechanism model tree shall only store mechanical model information. In other words, it shall not store any joint or state values. Mechanical model information includes fixed (non-articulated) transformations
 and joint constants that do not depend on articulation values (Figure 4). All articulation and state information shall be passed in through the stack
. This will make the mechanism model tree stateless. Keeping the fixed transformations separated from the articulated transformations (due to relative motion between bodies) allows us to make the tree stateless.

4.6. The mechanism model application program interface (API) shall support inputs of a vector of articulation values (e.g. a vector of joint angles/prismatic values) to compute the articulated transformations.

4.7. The mechanism model tree shall support multiple clients simultaneously (i.e the tree shall be multi-thread safe and re-entrant).

4.8. Position, velocity, and acceleration information relative to an inertial frame shall not be stored in the mechanism model. If such information needs to be stored, it will be cached in the algorithms that require and compute this information. This is important because it will enable various states to be updated at different rates and enable using parts of the tree at a time. It will also allow algorithms to use the mechanism model tree to predict future states for any given input state. The trade that is made here is the cost of re-computing derived states vs. making copies of mechanism model for each client application and keeping all their internal state up to date.
4.9. There shall be a single inertial frame on a body denoted by Ground_Body in a given deployment of systems. Ground_Body is the root of the tree (for a single or even multiple robots).
4.10. The Ground_Body shall have no joint associated with it since it is at the root of the tree and does not need a parent. It can have multiple Transform (please see Section 5 for definition) objects. These can define fixed sites of interest relative to the Ground_Body. Multiple mechanisms could reference the same Ground_Body. The location of each mechanism relative to the Ground_Body is defined in the joint that connects that body to the Ground_Body.
4.11. The Ground_Body is not part of a particular mechanism model description (i.e. the input model file (see Section 6)). However it can be referenced by the model description. Whenever needed, a separate input file can represent the Ground_Body information. This is important for creating composite mechanisms from identical components. For example, if you have a six-legged robot with identical legs, you only need a model for one of the legs and you can then create the robot by changing the mounting point for each leg.

4.12. There shall be a single tree of bodies that will capture the mechanism model and the bounding shape information needed for collision detection. Mechanism model API shall support the copying of bounding shape objects (e.g. trees) for collision detection algorithms. Copies of bounding shapes can store transforms relative to an internal frame (Figure 5).

4.13. An ME_Body shall have the following characteristics:

4.13.1. A single parent body. With will simplify the internal representation without any loss of generality.
4.13.2. A single joint that connects a body to its parent (i.e. open loop chain). The Ground_Body (root of the tree) has no parent and hence no joint.

4.13.3. A fixed shape transformation that defines the joint location relative to its parent’s reference frame. The relationships between bodies, joints and their coordinate frames are illustrated in Figure 6. The joint location frame shall have its z-axis aligned with the actuation axis. For revolute joints, the angle of rotation is about the +z-axis following the right-hand rule. For prismatic joints, the translation is along the z-axis. The x-axis of the joint location is user defined. In most cases it is aligned with the body’s length.

4.13.4. The body reference frame is attached to the body and coincident and aligned with the fixed shape transform (joint) frame of the parent when the joint is in zero position. The joint articulation transform represents the offset from this configuration due to the joint articulation.

4.13.5. Any number of fixed (non-articulated) transformations defined relative to the body reference frame (Figure 5).

4.13.6. A textual representation of the body name.

4.14. Bodies are assumed to be rigid

4.14.1. Software shall be extendable to support flexible body models.

4.15. An ME_Body may have the following optional characteristics:

4.15.1. Representation of bounding shape information for use by collision detection algorithms:

4.15.1.1. Each body can attach a tree of bounding shapes (see Figure 5). The bounding shape tree describes containment relations between the geometric objects representing a single body.

4.15.1.2. Bounding shapes in each body have their position transformations always relative to the body reference frame.

4.15.1.3. Bounding shape trees exist within the scope of their corresponding bodies (i.e. bounding shapes are managed by their corresponding bodies).

4.15.1.4. Bounding shapes can be presented by either a 2D or 3D shapes (e.g. terrain surface and walls are represented by 2D open meshes while manipulator links are represented by 3D shapes such as cylinders, boxes, spheres, and/or convex hulls). The bounding shape API shall support both 2D and 3D representations
.

4.15.2. Representation of geometric information for graphics display (future implementation).

4.16. An ME_Joint shall have the following characteristics:
4.16.1. A joint must not store its articulation value or any joint state information (such as joint mode which enumerates as: servoing, free, locked, etc.) – i.e. a joint must be stateless. State information refers to state that will change over time. Joint state is stored outside the tree. The articulation value for a revolute joint is defined by the rotation about the +z-axis relative to the fixed transform.

4.16.2. A function that accepts joint state as input and returns the relative transformation between the current body reference frame and the parent’s reference frame.

4.16.3. Fields for specifying joint limits: min and max values

4.16.4. A field defining the joint type: active (actuated) or passive (non-actuated); revolute, prismatic, ball, or planar (not to be confused with joint state).
4.17. An ME_Joint may have the following optional characteristics:

4.17.1. Fields for defining joint constraints – i.e. constraints that couple a joint to another (e.g. joint2 = a*joint1 + b) represented by the Joint_Constraint software object.

4.17.1.1. Joint shall have built-in support for linear constraints.

4.17.1.2. Joint shall support extensions for non-linear constraints.

4.17.2. Fields for specifying joint stiffness with linear parameters [kx ky kz tx ty tz].

5. Coordinate Frames and Transforms

5.1. While coordinate frame specifications may be relative to intermediate coordinate frames in the data input representation, the software shall internally compute and store all these coordinate frames relative to the body reference (Figure 7).

5.2. A coordinate frame transformation represents the relative position and orientation of one coordinate frame relative to another. A coordinate frame transformation will be denoted by Transform

5.3. A Transform shall have an API similar to the one currently implemented by HTrans in CLARAty (homogeneous transform). The HTrans internally represents a coordinate transformation as a 3x3 rotation matrix and a 1x3 translation vector. However, its API supports matrix operations as if it were a 4 x 4 matrix.

The rotation portion of Transform shall be implemented using the Quaternion rotation class. The translation portion of the Transform class shall be implemented using the Point (3D point) class.

Quaternion is a 4-element unit vector, the 4th element of which represents the scalar part. Quaternion will be interpreted in the right-to-left sense. For example, if q is a quaternion representing a transformation from frame A to frame B, then the components of a vector V in frames A and B are related according to:

VB = q (VA (q*, (q (BqA)

where ()* is the conjugate operation and the operator (represents a quaternion multiplication.

5.4. A Frame object shall be used to denote the physical location of a coordinate frame. The Frame object will contain a Transform object to specify its position and orientation relative to a reference Frame and a textual string to specify its name.
6. Model Data Input Requirements

6.1. Mechanism model parameters shall be specified in an eXtensible Markup Language (XML) input file (see Appendix A for an example).

6.2. CLARAty will require the use of SI units of meters for lengths, radians for angles, and kilogram for mass for input file. All internal values shall be stored in SI units. The implementation should be easily extended to support more general input units.

6.3. Each mechanism/appendage shall have a separate XML file. The application program shall read multiple files and construct the system model. The complete mechanism model may be assembled by reading in multiple XML files (e.g. arm model, mast model, mobility model are stored in separate files).

The order of reading input files is important for attaching appendages to proper mount points. For example, a rover body model must be read before an arm model file that attaches to the rover body is read.

6.4. Names of mount points and some default transformation shall be defined in each corresponding mechanism model file.
6.5. Mounting information from the model file can be overwritten when attaching appendages to a mechanism model by specifying different attachment points.

6.6. Mounting information for appendages relative to inertial frame should not belong to the appendage (arm) model files. For example: a K9 arm model can be used in various settings and be mounted differently in the lab vs. on the rover. Camera models will be defined relative to a mount point.
6.7. XML input file format shall support fixed coordinate frames relative to other fixed frames in a rigid body (Figure 7)
. However, the software will internally compute and store all these coordinate frames relative to the body reference frame.

6.8. Software shall support serialization (marshalling / de-marshalling) of mechanism model information for transmission/storage over media. Marshalling/de-marshalling in CLARAty is performed by the Flexible Data Marshalling (FDM) package in the data_io module for reading and writing objects and data from and to a variety of formats. The following formats shall be supported:

6.8.1. Text tagged XML and Parse Block.

6.8.2. Binary tagged ACE CDR and untagged file IO.

6.9. Input parameter file shall support a required set of kinematic parameters.

6.10. Input parameter file shall support an optional set of parameters:

6.10.1. Center of mass

6.10.2. Inertia matrix

6.10.3. Bounding shape

6.11. Input parameter file shall support different representations to specify the model:

6.11.1. Homogenous Transform (HT)

6.11.2. Zero Position (ZP) (add figure)

6.11.3. Denavit-Hartenberg-Craig (DHC) (per J.J. Craig’s) for systems composed of one DOF revolute joints

6.12. Model parameters are converted to an internal representation as follows:

6.12.1. For single degree-of-freedom joints, the articulation axis must be aligned with the z-axes

6.12.2. For multiple degrees-of-freedom joints, at least one joint axis must be aligned with the z-axis.

6.12.3. The articulation origin for revolute joints is located at the center of rotations.

6.13. Software shall support the output representations that match input representations. General conversion between different model representations might not be possible for some representations.

7. Kinematic Algorithms

7.1. The Mechanism_Model object shall implement a public member function to determine the transformation between any two Frames in the mechanism model for a given set of corresponding articulation values.

7.2. The Mechanism_Model object shall implement a public member function to return the differential relationship between articulation velocities and the linear and angular velocity of a Frame (i.e. the Jacobian matrix) in the mechanism model for a given set of corresponding articulation values.

7.3. Each ME_Body shall be easily extended to include a public member function that returns the position and orientation of its reference or other specified member Frame with respect to another Frame in the same or another ME_Body in the kinematic system for a given set of articulation values.

7.4. Each ME_Body shall be easily extended to include a public member function to return the differential relationship between articulation velocities and the linear and angular velocity of a member Frame (i.e. the Jacobian matrix) for a given set of corresponding articulation values.

7.5. The Mechanism_Model object shall implement a public member function to determine the linear and angular velocity of any Frame in the kinematic system with respect to another Frame for a given set of articulation values and velocities.

7.6. Each ME_Body shall be easily extended to include a public member function that returns the linear and angular velocity of its reference or other specified member Frame with respect to another Frame in the same or another ME_Body in the kinematic system for a given set of articulation values and velocities.

7.7. The Mechanism_Model object shall implement a public member function to determine the set of articulation values that will simultaneously fully or partially constrain one or more Frame(s) on the kinematic system to be located at other given Frame location(s) (i.e. solve for the inverse kinematics).

8. Constraint Management

8.1. A Constraint_Manager software object shall be used to administer the solution for inverse kinematics problems.

8.2. In solving inverse kinematics problems, the Constraint_Manager shall use Cartesian_Constraint objects to specify desired relationships between pairs of Frames.

8.3. Two types of Cartesian_Constraints shall be implemented: Contact_Constraints and End_Effector_Constraints.

8.4. Contact_Constraints shall be used to specify the desired surface contact between two Frames.
8.5. End_Effector_Constraints shall be used to specify the desired absolute or relative position of a Frame.

8.6. For the solution of a general set of Cartesian_Constraints that simultaneously apply to the kinematic system, an iterative numerical approach shall be used.

8.7. The Constraint_Manager shall setup the Cartesian_Constraints vector to solve for, and then use a Constraint_Solver to determine the configuration of the kinematic system that best solves for the set of Cartesian_Constraints.
8.8. Cartesian_Constraint inputs may be entered from a file, a trajectory generator or serialized data input through a communication stream.

8.9. In the initial implementation, Constraint_Solver may use a simple numerical approach, for example a Newton-Raphson iteration, to solve for the set of constraints. However, Constraint_Solver should be able to easily use other solvers to solve for the set of constraints.

8.10. The implementation shall allow the user to easily replace this generic constraint solution approach with customized solutions for particular inverse kinematic problems.

9. Software Interface Requirements

The class hierarchy for the Mechanism_Model software package is illustrated on Figure 8.

9.1. Mechanism_Model and its subordinate classes shall be used either as a stand-alone package for kinematic analysis or as part of the control software for the robotic system.

9.2. Mechanism_Model may be used directly by the robot control system or through interface classes that present simpler and restricted interfaces for common types of mechanisms. The interface class for manipulators shall be the Manipulator_Model class. Similarly, for wheeled mobile robots, it shall be Wheeled_Locomotor_Model and, for walking mobile robots, it shall be Legged_Locomotor_Model.
9.3. The interface classes enable the mechanical sub-systems to be controlled independently. This is the typical mode used for robotic operations. For example, a rover and the arm on the rover can be treated as two independent control systems by utilizing the Manipulator_Model and Wheeled_Locomotor_Model interface classes for the arm and the rover respectively. The alternative, if simultaneous coordinated control of the arm and rover is desired, is to directly use the Mechanism_Model class.

9.4. Adaptations of Manipulator_Model, Wheeled_Locomotor_Model and Legged_Locomotor_Model can override generic kinematics algorithm implementations with specialized algorithms whenever necessary.

9.5. Specialized kinematic algorithm implementations shall use parameter information from Mechanism_Model.
9.6. Manipulator_Model, Wheeled_Locomotor_Model and Legged_Locomotor_Model classes shall support marshalling/de-marshalling for their instantiation (see Section 6).

9.7. The relationship between the interface classes, Mechanism_Model and the control classes is illustrated on Figure 9.

10. Manipulator_Model class

10.1. The Manipulator_Model class gets manipulator model parameters from the Mechanism_Model class.

10.2. Adaptations of the Manipulator_Model class shall define special implementations (e.g., closed-form solution) of forward, inverse, and differential kinematics in addition to generic iterative kinematic solutions available from the Mechanism_Model.

10.3. Manipulator_Model subclasses are concrete object classes such as R8_Arm_Model and Fido_Mast_Model.

10.4. Figure 10 illustrates the use of Manipulator_Model interface class with Mechanism_Model, the Manipulator and the associated control classes.

11. Wheeled_Locomotor_Model class

11.1. The Wheeled_Locomotor_Model class gets the locomotor model parameters from the Mechanism_Model class.

11.2. Adaptations of the Wheeled_Locomotor_Model class shall define special implementations (e.g., closed-form solution) of flat-ground open-loop driving and slope differential driving kinematics algorithms.

11.3. Wheeled_Locomotor_Model subclasses are concrete object classes such as R8_Rover_Model and Fido_Rover_Model.

11.4. Figure 11 illustrates the use of Wheeled_Locomotor _Model interface class with Mechanism_Model, the Wheeled_Locomotor and the associated control classes.

12. Legged_Locomotor_Model class

12.1. The Legged_Locomotor_Model class gets manipulator model parameters from the Mechanism_Model class.

12.2. Adaptations of the Legged_Locomotor_Model class shall define special implementations (e.g., closed-form solution) of flat-ground open-loop walking and slope differential walking kinematics algorithms.

12.3. Legged_Locomotor_Model subclasses are concrete object classes such as Lemur_Model and Star_Model.

12.4. Figure 12 illustrates the use of Legged_Locomotor_Model interface class with Mechanism_Model, the Legged_Locomotor and the associated control classes

Figure 12: Use of Legged_Locomotor_Model Class
13. Manipulator and Locomotor Control classes

13.1. The Manipulator object, used to control a manipulator arm, shall aggregate a Manipulator_Model object. Manipulator_Model will reference the Mechanism_Model class for accessing the kinematic model data on the manipulator.

13.2. Manipulator object shall inherit from generic Device class

13.3. Manipulator shall support various motion controls:

13.3.1. Joint motion control

13.3.2. Cartesian motion control (straight line motion)

13.3.3. Gravity compensation

13.3.4. Sensor-based control such as force control, compliance control, visual servoing, etc.

13.4. Manipulator shall use:

· Manipulator_Model

· Motor_Group

· Coordinated_Motion_Generator

13.5. Motor_Group shall define the correspondence between manipulator joints and actual motors.

13.6. Coordinated_Motion_Generator is a coordinated trajectory generator. A straight line generator is an example.

13.7. Manipulator subclasses shall be concrete object classes such as R8_Arm and FD_Mast.

14. Usage Instantiation Model

An example to create a mechanism model of a walking robot is the following:

// Create a mechanism model of the rover body

Mechanism_Model rover_model(“body_model.xml”);

// Attach a leg to the “leg1_mnt” frame defined in “body_model.xml”

// using the leg model in “leg_model.xml”

rover_model.attach((“leg_model.xml”, “leg1_mnt”);

// Attach a leg to the “leg2_mnt” frame defined in “body_model.xml”

// using the leg model in “leg_model.xml”

rover_model.attach((“leg_model.xml”, “leg2_mnt”);

 …

To create an arm that uses a yaw-pitch-pitch-pitch-yaw (YPPPY) configuration, one can create a YPPPY kinematic model which is a specialization of Mechanism_Model (see Figure 13).

// Create a mechanism model of the K-9 arm

YPPPY_Arm_Model ypppy_model(“k9_arm_model.xml”);

// Create a R7_Arm manipulator with a

// YPPPY model
R7_Arm r7_arm(ypppy_model);

15. Performance Requirements

15.1. Specializing mechanism model shall be relatively simple and require the following TBD steps

15.2. Execution overhead for mechanism model shall have the following TBD performance.

16. Further Discussion:

· Should Mechanism_Model be renamed to Mechanical_Model to avoid the confusion that mechanism refers to a closed chain?

· Are we supporting both R. Paul’s and J.J. Craig’s DH parameter definition for input files?

· Does the articulation origin for revolute joint need to be located at the center of rotations?

· Should we have capability of specifying collision matrix that lists pairs of objects that can potentially collide in XML file?

· Should Mechanism Tree replace Frame Tree? Rationale: a client of Frame Tree cannot learn what axes are being articulated. Hence, Frame Tree presents necessary but not sufficient information. Frame Tree also has state.

· If Manipulator class needs to be extended in the future, there are two ways to do so. One way is to insert more methods (functions) into the Manipulator class without conflicting existing methods to make sure that existing programs are not affected, while new users may use new methods. Another way is to allow creating abstract subclasses of Manipulator, for instance, Guarded_Manipulator subclass with collision checking. In this case, users may opt to change inheritance from Manipulator to a newly created subclass if desired – better to support first option.

[image: image2.png][image: image3.png][image: image4.png]
Ground_Body

Figure � SEQ Figure * ARABIC �1�: Mechanism model: bodies and joints

Reference Frame

Actuated

Non-linear Joint Constraint

L

L

L

L

(b) Four-bar mechanism modeled with either (i) position constraint, or (ii) with non-linear joint constraints

Position Constraint

(a) Four-bar mechanism

Actuated

Figure � SEQ Figure * ARABIC �3�: Handling closed loop chains

Figure � SEQ Figure * ARABIC �2�: Mechanism Model Body Tree

Body5

Body Tree

Body0

Body2

Body3

Body1

Reference Frame

x0

x0

T1 – fixed shape transform

x1

Joint1

Body1

Body0

Body1 object contains joint1

Body1 object contains fixed shape transform defining joint1 zero location

Body1 reference frame z-axis is aligned with joint1 rotation axis

Figure � SEQ Figure * ARABIC �4�: Handling fixed and articulated coordinate frame transformations

Figure � SEQ Figure * ARABIC �6�: Defining body and joint relationship in a mechanism model

Articulated Translation

Joint2

Shoulder� Yaw

Arm

Mount

Frame

Fixed Transform

Body2 Reference Frame

Articulated Rotation

Body2CG

Camera�Mount

Frame

Sensor Mount Frame

Body2�Lower arm link

Joint1

Body0�Rover

Camera

Frame

Rover�CG

Rover�Reference� Frame

Body1�Upper arm link

Body1CG

Body1�Reference Frame

Figure � SEQ Figure * ARABIC �5�: The components of a mechanical element body ME_Body

Bounding Shapes Resolution Levels

Relative to body reference frame

Leaves of tree define finest shape

Finest Shape

Finer Shape

Coarse Shape

B5

C1

B4

B3

B2

B1

C1

B5

B4

B3

B3

B2

Bounding Shape Tree

Jointi�

B1

Bodyi

Camera

Mount Frame

Center of

mass

Arm mount

Frame

Sensor

Mount

Frame

Body Reference Frame

(b) All fixed frames computed and internally� stored relative to body reference

(a) Fixed coordinate frame transformation can be inputted from model file (XML) relative to one another

Bodyi

Bodyi

Hazard�Camera 2

Hazard�Camera 1

Stereohead�mount

Arm�mount

Rover�CG

Rover Reference Frame

Arm�mount

Rover CG

Rover Reference Frame

Stereohead�mount

Hazard�Camera 2

Hazard�Camera 1

Figure � SEQ Figure * ARABIC �7�: Options for coordinate frame transformation input vs. internal storage representation

Figure � SEQ Figure * ARABIC �8�: Class Hierarchy for Mechanism_Model package

0,1

Joint_Constraint

Transform

ME_Joint

Contact_Constraint

Cartesian_Constraint

ME_Body

Tree<ME_Body>

Quaternion

Frame

1, … n

1

1

1

1, …n

1

Bounding_Shape

Tree<Bounding_Shape>

1

2, …n

Point

1

0, …n

1

2

1, … n

1, …n

1

1

2, …n

Mechanism_Model

Constraint_Solver

End_Effector_Constraint

Constraint_Manager

XML_FDM_File_IO

Figure � SEQ Figure * ARABIC �9�: Use of Manipulator_Model class

Figure � SEQ Figure * ARABIC �10�: Interface classes for Manipulator, Wheeled_Locomotor and Legged_Locomotor

Legged_Locomotor

Model

Legged_Locomotor

Wheeled_Locomotor

Model

Wheeled_Locomotor

Mechanism_Model

Manipulator

Manipulator_Model

Legged_Locomotor

Model

Legged_Locomotor

Wheeled_Locomotor

Model

Wheeled_Locomotor

Mechanism_Model

Manipulator

Manipulator_Model

Motor_Group

Mechanism_Model

Motion_Generator

Coordinated

Device

Device

R8_Rover_Model

R8_Rover

R8_Motor

Ctrl_Motor

Wheeled_Locomotor

Wheeled_Locomotor_Model

Motor_Group

Mechanism_Model

Motion_Generator

Coordinated

Device

Device

R8_Arm_Model

R8_Motor

Ctrl_Motor

Manipulator

Manipulator_Model

Figure � SEQ Figure * ARABIC �11�: Use of Wheeled_Locomotor_Model class

Motor_Group

Mechanism_Model

Motion_Generator

Coordinated

Device

Device

Lemur_Model

Lemur

Lemur_Motor

Ctrl_Motor

Legged_Locomotor

Legged_Locomotor_Model

Motor_Group

Mechanism_Model

Motion_Generator

Coordinated

Device

Device

R8_Arm_Model

R8_Motor

Ctrl_Motor

Manipulator

Manipulator_Model

Figure � SEQ Figure * ARABIC �13�: Inheriting specific models from Manipulator_Model

Manipulator_Model

YPPPY_Arm_Model

Reference

Frame

F

root_body

Inertial Frame

Reference

Frame

Jointi+2

Bodyi+2

Frame A

Sensor Frame

to base (inward)

to tip (outward)

Jointi+1

Jointi

Bodyi

Bodyi-1

Bodyi+1

Body4

� CLARAty: Coupled Layer Architecture for Robotic Autonomy

� Relationships between coordinate frames that do not move with respect to the body

� Current implementation of Frame Tree in CLARAty does not distinguish between fixed and articulated transformations. We are proposing a mechanism model that will.

� Bounding shape support for oct trees needs further investigation

� Similar to what the Frame Tree implementation currently supports.

PAGE
4

