Functional Design Document

Visual Odometry

Mars Science Laboratory

Technology Functional Design Document

Visual Odometry

Revision: 02
Date: 03/27/2003
Prepared By:

Document Custodian:

Yang Cheng

Terry Huntsberger

Paper copies of this document may not be current and should not be relied on for official purposes. The current version is in the MSL Project Library at http://mars07-lib.jpl.nasa.gov, in the TBD folder.

[image: image1.png]

Jet Propulsion Laboratory

4800 Oak Grove Drive

Pasadena, CA 91109-8099

This Page Intentionally Left Blank

MSL Technology Functional Design Document –Visual Odometry
Signature Sheet

Approval

Yang Cheng – Technology Provider

Date

Barry Werger – CLARAty POC

Date

Platforms:

Rocky 7

Rocky 8

FIDO

K9

Other
Terry Huntsberger – Task Manager, Test & Validation: Long Range Traverse

Date

Revision: 02

Date: 03/27/2003
Table of Contents

61
Introduction

2
Related Documents
6
3
Requirements
6
4
Hardware Interfaces and functionality
6
5
Basic Software Functionality
6
5.1
Command 1 (to be filled in by CLARAty POC)
9
5.2
Engineering Data Products
9
6
Fault Protection Software Details
10
6.1
Visual Odometry Fault Monitors
10
6.1.1
Fault 1
10
6.1.2
Fault 2
10
6.2
Visual Odometry Fault Response
11
6.3
Visual Odometry Fault Monitors not in current release
11
6.3.1
TBD
11
7
Operational Constraints
11

Revision History

	Revision
	Date
	Description
	Author

	DRAFT
	12/15/02
	draft
	T. Huntsberger

	Initial Release
	02/19/03
	Revision 01
	Yang Cheng

	Revision
	03/27/03
	Fixed format and inputs from first draft
	T. Huntsberger

	
	
	
	

	
	
	
	

	
	
	
	

1 Introduction

This document contains the Functional Design Description (FDD) for the visual odometry software functionality. Visual odometry derives rover motion estimation by tracking features from stereo image sequences taken during a traverse. This document covers both the nominal and off-nominal (fault protection) functionality of Visual odometry.

2 Related Documents

The documents related to visual odometry are given in Table 1

Table 1 – Related Documents

	Document Title

	Larry Matthies “Dynamic Stereo Vision” CMU-CS-89-195

	C. F. Olson, L.H. Matthies, M. Shoppers, and M. Maimone, Robust stereo ego-motion for long distance navigation, In Proceedings of the IEEE Conference in Computer Vision and Pattern Recognition, Vol. 2. 2000.

	C. F. Olson, L.H. Matthies, M. Shoppers, and M. Maimone, Stereo ego-motion Improvements for robust rover navigation, In Proceedings of the IEEE International Conference on Robotics and Automation, pages 1099-1104, 2001.

3 Requirements

Current MSL reference mission guidelines specify an error of not more than 3% of total distance traveled for spatial localization.

4 Hardware Interfaces and functionality

The visual odometry interfaces to H/W include:

· Front and/or rear hazard cameras (images)

· Wheel encoder for initial x and y motion (position)

· IMU and gyro for initial attitude (attitude)

5 Basic Software Functionality

	Transfer Cameras: (VisOdom::TransferCameras). The stereo camera models are transferred to the global coordinate based on the initial pose provide by onboard sensor.

Syntax: VisOdom::TransferCameras(int step)

Where: step is the image step (0, 1, 2, 3….)

	Feature Selection: (VisOdom::FeatureSelection) Features that can be easily matched between stereo pair and tracked between image step are selected. An interest operator (e.g. Förstner) is applied to left image of the stereo pairs. These pixels with high interest values are selected. A constrain of minimum distance between features is enforced to ensure features selected evenly across the image scene.

Syntax: VisOdom::FeatureSelection(int step, int border)

 Where: step is the image step (0, 1, 2, 3….), and border is the buffer width around the image border, where no feature is selected.

 Stereo matching: (VisOdom::FeaturesStereoMatch) Features selected in FeatureSelection are matched to the right side of image pair to determine the 3D positions. The image stereo matching is done on unrectified image, and reaching window is a rectangular window along the epipolar line.

 Syntax: VisOdom::FeaturesStereoMatch(float minrange, float maxrange)

 Where minrange is the distance to the closest feature, and maxrange is the distance to the farthest feature.

	 Feature Gap Analysis: (VisOdom::FeaturesRayGaps). The features obtained so far will go through a QA procedure. The 3D position of a feature, if it has not error, can be project perfectly to its 2D position on both left and right images. The gap between the projected position and original feature position indicates the quality of this feature. If the gap is too large, this feature will be removed.

 Syntax: VisOdom::FeaturesRayGap(int maxGap)

 Where maxGap is the maximum distance between in a projected feature and its original feature in pixel.

	
Feature Covariance: (VisOdom::FeaturesCov). The 3D covariance of the all survived features are computed. The 3D covariance of a feature is a function of its 3D location as well as the 2D covariance of the stereo match.

Syntax: VisOdom::FeaturesCov()

	Feature Track: (VidOdom::FeaturesTrack) After the rover moves a certain distance, the second pair of stereo images is acquired. The features selected from the previous image can be projected to the second pairs by a prior knowledge of the approximated motion provided by the onboard wheel odometry. Then a correlation-based search and an affine template tracking determine these features’ 2D positions precisely in the second image pair. The affine template tracking aims to remove the tracking error caused by big rolling and scale change between images. In this case, the relationship between two images within the template is expressed as an affine transform

[image: image2.wmf]
Where [a, b, c, d, e, f] are the unknown coefficients of the affine transform and they can be determined by an iterative method by minimizing a merit function as [4]

[image: image3.wmf]
Syntax: VisOdom::FeatureTrack(int searchWin)

Where searchWin is the half of the search window size.

	 Feature Rigidity Test: (VisOdom::RigidityTest). This is based on the constraint that landmarks must be stationary; therefore, a given set of landmarks should appear as a rigid cluster over time, with distances between features remaining constant.

 Syntax: VisOdom::RigidityTest()

	 Motion Estimation: (VisOdom::MotionEstimation) Stereo matching is then performed in these tracked features on the second pair to determine their new 3D positions. If the initial motion is accurate, the difference between two estimated 3D positions should be within the error ellipse. However, when the initial motion is off, the difference between the two estimated positions reflects the error of the initial motion and it can be used to determine the change of rover position.

 The maximum likelihood motion estimation takes account of the 3D position difference and associated error models to estimate position. Let Qpj and Qcj be the observed features positions before and after a robot motion. Then we have

[image: image4.wmf]
where R and T are the rotation and translation of the robot and ei is the combined errors in the observed positions of jth features. In this estimation, 3 axis rotations (Θ) and translation T are directly determined by minimizing the summation in the exponents
[image: image5.wmf], where
[image: image6.wmf] and Wj is the inverse covariance matrix of ej. The minimization of the nonlinear problem is done by linearization and iterations [1]. Two nice properties of the maximum-likelihood estimation make the algorithm powerful. First, it estimates the 3 axis rotations (Θ) directly so that it eliminates the error caused by rotation matrix estimation such as by the least-squares estimation. Secondly, it incorporates error models in the estimation, which greatly improves the accuracy.

 Syntax: VisOdom::MotionEstimation(int step)

Or

 VisOdom::MotionEstimationFusion(int step, VisOdom *rear)

Where VisOdom *rear is another set of stereo pair, which could be rear hazard cameras or others.

Notes: When more than one pair stereo images are available and the time is permitted, VisOdom::MotionEstimationFusion will give better estimation.

	 Least Square Motion Estimation: (VisOdom::Schonemann). The initial estimation used by the maximum likelihood motion estimation is obtained by least square motion estimation, which is also called Schonemann least square estimation. This approach is fast but less accurate.

 Syntax: VisOdom::Schoeman(int step, double rot[3][3], double translation[3])

 Or

 VisOdom::Schonemann_Least_Middlian_Square(int step, double rot[3][3], double translation[3])

Where: step is the image step, rot is the estimated rotation matrix, translation is the rover position. All them are in global coordinate system.

Notes: the difference between VisOdom::Schonemann_Least_Middlian_Square and VisOdom::Schoeman is that the Schonemann_Least_Middlian_Square has a outliers rejection function imbedded in .

	Transfer Cameras to Estimated pose: (VisOdom::TransferCamerasEstimated). The stereo camera models are transferred to the global coordinate based on the final pose provide Visual Odometry.

Syntax: VisOdom::TransferCamerasEstimated(int step)

Where: step is the image step (0, 1, 2, 3….)

	 Image preparations: (VisOdom:: GeneratePyramidsMatch and GeneratePyramidsTrack). Two image pyramids are created for stereo matching and tracking.

 Syntax: VisOdom::GeneratePyramidsMatch()

 VisOdom::GeneratePyramidsTrack()

Figure 1 – Visual Odometry SW Context

This section describes the nominal and off-nominal SW functionality required for visual odometry. Figure 1 provides the SW context for Visual Odometry in the rover system. The primary use of Visual Odometry is for estimation of the rover’s position.

Visual Odometry includes the following safety checks (fault protection monitors) (to be added in later)

5.1 Command 1 (to be filled in by CLARAty POC)

The Command 1 allows the rover to <basic functionality> as shown in Figure X (if appropriate).

Command1 (argument1(units), argument2(units), …)

· Functionality detail 1.

· Functionality detail 2.

· …
5.2 Engineering Data Products

The details of the data products generated during Visual Odometry commands are X,Y,Z and roll, pitch, yaw, and the covariance matrix.. Conceptually there are two data products:

· Visual Odometry Data Product

· Estimated X,Y,Z & roll, pitch, yaw derived from the visual analysis.
· The covariance matrix (6 by 6) for each estimation

· Visual Odometry Error Data Product

· Includes specific fault condition and recent detailed history of relevant data.
6 Fault Protection Software Details

The fault monitors or safety checks for Visual Odometry are detailed in following sections. The limits and persistence for the fault monitors are ground-settable. The responses to these faults can be disabled.

6.1 Visual Odometry Fault Monitors

6.1.1 Fault 1

Too few features for motion estimation: When the number of input features is less than 8, the motion estimation will return an error message. System will continue to run with use of wheel odometry substituted for visual inputs and will return to visual based processing on the next image acquisition.

6.1.2 Fault 2

Occasionally, When the maximum likelihood estimation does not converge, an error message will be returned. System will continue to run with use of wheel odometry substituted for visual inputs and will return to visual based processing on the next image acquisition.

…

Table 2: Visual Odometry Fault Protection Summary

	Monitor
	Detection
	Detection Done By:
	Reaction Done By:

	Fault 1
	Too few features.
	Motion estimation
	Use the wheel odometry

	Fault 2
	Motion estimation do not converge
	Motion estimation
	Use the wheel odometry

6.2 Visual Odometry Fault Response

The system level response to a Visual Odometry fault is:

· Algorithm uses wheel odometry.

6.3 Visual Odometry Fault Monitors not in current release

6.3.1 TBD

7 Operational Constraints

1. Lighting constraint: Because the visual odometry uses visual images for motion estimation. Obviously, when the environment is too dark (lost contrast) or too bright (over saturated), this approach will not work. Another constraint related to lighting is that the time difference between the two images should not be more than 1/2 hour. The potential problem caused by the large time gap is that the image will appear different due to the sun position change.

2. Camera models: All camera models have to be calibrated accurately in a single rover frame. Any error in the camera model will cause the rover drifting.

3. Initial motion: The initial motion information include, X, Y, heading, roll, and pitch. When the roll and pitch are not available, a large search window is needed.

4. The step size and steer angle tolerances: Loss of common feature points between images is caused by a step size or a turn that is too large. To be determined by Long Range Traverse Test & Validate Project.

Motion estimation

Feature rigidity test

Feature stereo matching

Input second motion

Input second stereo images

Feature Tracking

Feature stereo matching

Feature selection

Input first motion

Input first stereo images

Page 11

_1096437964.unknown

_1096443441.unknown

_1096443494.unknown

_1096442151.unknown

_1096437652.unknown

