Functional Design Document 

Visual Target Tracking

[image: image1.png]



Mars Science Laboratory

Technology Functional Design Document

Visual Target Tracking

[image: image2.jpg]



Revision: Revision 0.1
Date: February 20, 2004
Prepared By:



Document Custodian:





Richard Madison



Issa A.D. Nesnas

Paper copies of this document may not be current and should not be relied on for official purposes. The current version is in the MSL Project Library at http://mars07-lib.jpl.nasa.gov, in the TBD folder.

[image: image9.png]1 it
Lt
| image

Locomctor
command

- Onetime operation -~

Operstor Creste afine

Designates [~ | (4T Tempes

Target of various sizes
(notupdated)

from
navigator

oveasier | |
Toward Toget | |
L] wheel odomety
Estimator
ooy
Pese
Ciimas

[0 Nom-autonomans tep
= mage/ subimage it

— CoordnataTanstom nput

Visual Odormetry
(Hazard Cameras)

e
—
D ame Tiackng e
(start w/ smallest tamplate) (NCC)

Verity 2D Location
Fraisuse NCOrat

coordinate | Verity 2D Location
1o use prelited

Stereovision
Target Point

—r
Figt imsge

Verity 3D Location
#ioisuse preditsd 20

Acquire mast

Fredict New Target Location

2080 T

steren Images
ased

it

if fals use

wheel acometry

Mast Pointing Kinernat
(PanTily

s, .|
PanTitangles

~Target Tracker





Jet Propulsion Laboratory

4800 Oak Grove Drive

Pasadena, CA 91109-8099

This Page Intentionally Left Blank

MSL Technology Functional Design Document – Visual Target Tracking

Signature Sheet

Approval

Max Bajracharya

Richard Madison

Esfandiar Bandari

Matthew Deans

Clayton Kunz

Maria Bualat

Issa Nesnas – Technology Providers




Date

Issa Nesnas – CLARAty POC





Date

Platforms:

[image: image3.jpg]



Rocky 7[image: image4.bmp]



Rocky 8

[image: image5.bmp]
[image: image6.jpg]


FIDO



K9


Other[image: image7.png]



Won S. Kim – Task Manager, Test & Validation: Instrument Placement

Date


Revision: Revision 0.1

Date: June 24, 2004

Table of Contents

71
Introduction

2
Related Documents
8
3
Requirements
8
4
Hardware Interfaces and functionality
9
5
Basic Software Functionality
10
5.1
Software Components
12
5.2
Usage
14
5.3
Engineering Data Products
14
6
Fault Protection Software Details
15
7
Operational Constraints
16


Revision History

	Revision
	Date
	Description
	Author

	Rev 0
	2/20/04
	Initial draft
	R. Madison

	Rev 1
	6/24/04
	Updated document with changes to algorithm
	I. Nesnas

	Rev 2
	7/26/04
	Updated figure and made changes proposed by Madison
	I. Nesnas

	
	
	
	

	
	
	
	

	
	
	
	


1 [image: image8.png]


Introduction

This document contains the Functional Design Description (FDD) for the Visual Target Tracking software.  This software allows a user to select a 2D target in an image acquired from a rover mounted camera and track that designated target as the rover traverses towards that target.  The software is designed to handle traversals of about ten rover lengths using mast mounted cameras over moderately rough terrain.  The length of the traverse and the accuracy of the tracked target depend on the camera optics and mobility mechanism of the rover. The algorithm depends and uses other validated component technologies. These components include: stereovision, visual odometry, and rover mobility. This delivery adds visual target tracking and mast pointing to the CLARAty repository.  

The algorithm combines 2D and 3D visual information about the target and its environment to track the designated target while the rover traverses towards that target. The algorithm requires the rover to stop at specific intervals to carry out the computations for pose estimation (visual odometry) and for target tracking. Using navigational cameras mounted on the rover mast, the algorithm uses stereovision processing to find the 3D position of the target and then points its articulated mast toward that target. Using a combination of normalized cross correlation and affine tracking seeded by a pose estimate from visual odometry, the rover drives toward its goal keeping lock on the designated target. The algorithm adapts its window sizes based on feature matching results. The target may leave the cameras’ field of view between imaging stops, so the software updates camera pointing direction, using Visual Odometry to monitor rover 3D position and orientation relative to the target.  A failure in a single step will cause the algorithm to default to a less accurate estimate of the target location. Multiple failures are also handled but failure of all components will result in a lost target and an abort of the algorithm.
2 Related Documents

The documents related to Visual Target Tracking are given in Table 1

Table 1 – Related Documents

	Document Title

	I. Nesnas, “Robust Autonomous Instrument Placement for Rovers,” ASTEP - Year 2/3 Annual Progress Report, NASA UPN: 102300 344-51-21-00

	I. A. Nesnas, “Visual Target Tracking”, MTP FY03 Year End Review Presentation,       http://claraty.jpl.nasa.gov/new_site/software/technology/visual_tracking/fy03_year_end_presentation/Visual_Tracking_FY03.ppt

	2D/3D Visual Tracker for Rover Platforms - NTR Number: 40696

	I. Nesnas, M. Bajracharya, E. Bandari, R. Madison, C. Kunz, M. Deans, M. Bualat, “Visual Target Tracking for Rover-based Planetary Exploration,” submitted to IEEE Aerospace Conference, Big Sky, Montana, March 2004


	D.M. Helmick, Y. Chang, S.I. Roumeliotis, D. Clouse, and L. Matthies, "Path Following using Visual Odometry for a Mars Rover in High-Slip Environments," In Proc. 2004 IEEE Aerospace Conference, Big Sky, MT, Mar. 6-13.

	R. Madison, "Results of using ICP for tracking from on-board rover," internal report, February 2004 - http://claraty.jpl.nasa.gov/new_site/software/technology/visual_tracking/

	W.S. Kim, R.C. Steinke, R.D. Steelem "Mars Science Laboratory 2-D Target Tracking Technology Validation Report," internal document, JPL D-28523, April 2004

	T. Huntsberger, H. Aghazarian, M. Garrett, L. Magnone, G. Woodward, “Mars Science Laboratory Visual Odometry (VO) Technology Test Report,” internal document, JPL D-TBD, May 2004


3 Requirements

The current baseline MSL requirement includes the ability to place an instrument on a target selected from 10 m away with an accuracy of 1 cm.  This software allows the rover to identify a target and track the target for the distance until it is within reach of the arm manipulator.
The software will track a 2D target point in a sequence of images taken by a rover as it approaches the target:
· The 2D target point will be selected in the first image of the sequence.  It will represent a 3D point that is approximately 10 m from the rover.

· The rover will approach the 3D target point, over rough terrain, until the rover is approximately 2 m from the target point.

· The software will recover the 2D position of the target in each successive image.

· The recovered 2D position of the target in the final image will be within 1 cm of the projection of the 3D target point into that image.

4 Hardware Interfaces and Functionality 

Visual target tracking assumes that the following hardware functionality and interfaces are available:
· Rover: for a demonstration of the target approach, the software requires a mobile platform that is driving towards the designated target. The software does not need to command the rover motion. The current delivered software has been implemented and tested on the Rocky 8 rover. However, the software is applicable for any rover that satisfies the remaining hardware capabilities. The delivered demonstration algorithm uses the CLARAty locomotion software to command the rover to drive toward the target.

· Camera pointing: the software requires cameras that can be pointed to keep the selected 2D target in the cameras’ field-of-view during the entire approach.  The Rocky 8 rover has a mast with a pan/tilt mast head.  Two camera pairs are mounted on the mast: navigation cameras with 6 mm focal length (~ 45° FOV) lenses and a 20 cm baseline and panoramic cameras with 16 mm focal length (~17° FOV) lenses and a 30 cm baseline.  The visual tracking algorithm can be applied to either camera pair or to both.  Part of the visual tracking algorithm is to provide CLARAty software the capability to command the pointing direction of the pan/tilt platform accurately taking into account camera misalignments. 
· Stereo Cameras:  the software uses the mast-mounted navigation cameras on the Rocky 8 mast.  One camera provides imagery in which to designate and track the target point.  A second camera provides supporting imagery for generating stereo depth maps, which are used to recover the 3D position of the 2D target point and to determine the actual motion of the rover.  CLARAty software provides the interface to acquire imagery from the cameras and generate the 3D point using stereo vision.
· Camera models: the software uses a CAHVOR camera model for each camera when generating depth maps from stereo images.  This requires the cameras to be calibrated for a CAHVOR model and requires the software to know the CAHVOR parameters of each camera and the coordinate frame in which those parameters are measured.
The camera configuration for the Rocky 8 rover used in this delivery is as follows:

· Hazard cameras with fixed 2.8mm lenses, 640x480 CCDs and a 8.6 cm baseline

· Navigation cameras on a pointable (pan/tilt) mast head. Lenses are 6mm w/ 1024x768 CCDs and a 20 cm baseline

· Panoramic cameras on a pointable mast head with 16mm lenses, 1024x768 CCDs, and a 30 cm baseline

5 Basic Software Functionality

Figure 2 illustrates the general functionality of the software.  The software loops over the following basic steps:  acquire images, locate a 2D target in one image, refine 2D target location, drive a step, estimate rover motion, project the target into 3D, re-aim your tracking cameras toward projected 3D target.  To locate the 2D target, a user selects the target in the first frame, and the algorithm tracks the feature through later frames.

5.1 Purpose of Algorithm:

To autonomously track a target designated by a scientist/operator (from about 10 rover lengths away). This algorithm tracks a target by re-aiming its articulated tracking cameras at every step while the rover traverses moderately rough terrain towards that target. This provides a key technology component for the single-cycle instrument placement for Mars rover applications. It also provides capability for use in hand-eye robotic coordination tasks.

The algorithm operates as follows:

· User selects a target (a point on a rock or on the ground) in an image. The target should be within "good" stereo range (about a maximum of 10 m for mast mounted 45 degree field-of-view navigation cameras).

· The software autonomously tracks the selected target by driving towards it in small steps. Step size is determined from multiple sources: (1) visual tracker's maximum allowable change in feature location and shape in the image, (2) navigator's maximum step size for safe traversal, and (3) pose estimator's maximum step size before a stop is necessary for nulling out IMU biases.

· At each step, the visual tracker will localize the designated target to within a specified 3D location accuracy or a 2D image pixel accuracy. Accuracy depends on camera optics, image resolution, stereo camera baseline, and accuracy of camera calibration parameters.

5.2 Inputs:

· One time

· The image coordinates (row, col) of a target designated by the user in one of the camera images

· At every step
· Stereo images from mast mounted cameras and their two corresponding camera models
· An estimate of change in rover pose between drive steps

5.3 Outputs:

· The (row, col) image coordinates and uncertainty of the tracked target of interest
· The corresponding (x,y,z) location and uncertainty of the tracked target
· A failure status and operation abort when tracker loses its target

Our algorithm tracks a user-specified target, combining 2D and 3D information to improve reliability and accuracy of the tracking.

The algorithm uses 2D information in the form of the intensity pattern surrounding user-specified target coordinates in an initial image. The algorithm tracks this pattern across consecutive images. This 2D visual tracking is decomposed into two steps: (i) a normalized cross correlation (NCC) tracker and (ii) an affine matcher. The cross correlation takes the pattern around the 2D target coordinates in each frame and tracks it into the next frame, adapting as the target deforms over consecutive frames, but potentially drifting from the original pattern. The affine matching refines the NCC estimate by warping the area around the NCC estimate to match the pattern of the original, user-specified target. If affine matching is inconclusive, for instance if the target pattern has insufficient texture, the matching is repeated using a larger pattern. In addition, the matching is repeated at several resolutions, with each higher resolution further restricting the tracking distance but increasing the tracking accuracy. Tracking in 2D is not 100% reliable (see W.S. Kim, et.al., "2D Target Tracking Validation Report"). In particular, it will fail if the target pattern leaves the camera field of view.

The algorithm uses 3D information to estimate the target position and actual rover motion, which it uses to point the camera, to keep the target pattern in the camera field of view. The pose estimation algorithm combines multiple sensor modalities such as inertial measurement unit (IMU), wheel odometry from encoders and potentiometers on the mechanism, and visual odometry from wide field-of-view, hazard cameras. The algorithm uses stereo vision to estimate the target 3D position relative to the rover before a step, and uses the estimated pose change to infer the target position after the step. It points the camera at the inferred 3D point, where the 2D tracker can detect it. Using 3D information alone accumulates error with each motion estimate on top of any stereo ranging error in the initial estimate of target position but it provides sufficient accuracy for camera pointing, which the 2D tracker requires.
This combination of several 2D and 3D approaches allows us to track robustly and accurately by starting with robust but inaccurate estimates, such as wheel odometry, and refining in stages toward algorithms that are highly accurate but require good initial estimates, such as affine tracking.  If any elements of the tracking process fail, the algorithm defaults to using the results of the preceding, less accurate tracking step. Worst case performance if all 2D refinement steps fail is to default to the predicted target location based on the results of visual odometry.
Below is an outline of the algorithm:

· Acquire a stereo image pair from the tracking cameras (this delivery was completed for navigation cameras).

· Rectify and send one (left) image from the on-board rover computer to the ground system (host computer).

· The operator selects a point in the rectified image. The (row, col) for the designated target is then sent to the rover. All following steps are fully autonomous.

· Rover receives the designated (row, col) and computes the 3D location of the point using stereo vision.

· Algorithm creates KLT (Kanade-Lucas-Tomasi) template windows of various sizes around the target.

· For each drive command, the algorithm:

· Creates normalized cross correlation (NCC) template of the target

· Moves the rover one step

· Estimates the change in rover pose (using visual odometry from hazard cameras)

· Points the tracking cameras

· Acquires an image pair

· Sends left image and predicted 2D target location to host

· Matches NCC template across a search window in the new image. This step is carried out at pyramid level 1 (quarter image size).

· Sends new 2D target location to host

· [Verifies that the corresponding 3D location of the target is within a specific error bound of the predicted location derived from the rover pose estimate. If fails, use predicted location from rover pose alone]
· Matches three different size affine (KLT) templates across the search window. 

· Starts with largest size original template for a coarse match

· Verifies the 2D location

· [Verifies the 3D location]

· If fails to match, uses previous results (NCC result if using largest template or previous result if using smaller templates)

· Repeats steps with smaller KLT template to refine target position 
· Sends the new target location to the host

Notes:

· [] - not part of this delivery. Will be part of the updated delivery
· Italic - for display and debugging purposes only 

· Normalized cross correlation (NCC) matches a template across a search window of specified size; the highest score indicates the best match

5.4 Software Components

The following bullets describe the components of the algorithm depicted in Figure 3.

· Acquire Images: The software issues CLARAty camera commands to acquire images.  One image of the first pair will be used to designate the target location.  Camera models are required to triangulate the corresponding 3D location of the target designated in the image.  The current delivery uses 6 mm mast mounted navigation cameras because they have sufficient field-of-view (45° FOV) and sufficient resolution for accurate tracking. With perfect tracking, using such lenses yields sufficient resolution to achieve 1 cm accuracy for a target selected from ten meters away. Narrower FOV lenses require more precise calibration of the mast mounted cameras. Additionally they require higher quality images to get good stereo matching at full resolution of 1024 x 768. They also require higher precision pointing due to the narrow field of view.  The updated delivery will address the use of 16 mm (17° FOV) lenses for tracking.
· Designate a Target: This is the only manual step in the entire process. After the rover acquires the first image pair, one image (e.g. left image) is sent to the host machine. A GUI displays the left image and prompts the user to select a target.  The user graphically specifies the coordinates of a target in the image.  The software shows the designated target by drawing a box centered around the selected point. The selected pixel is then sent to the rover to start tracking. 
· Create Affine Template Windows: Tracking requires a pattern, not just a target point, so a window around the point of interest is needed to capture enough texture to uniquely identify the target in its local vicinity.  Our initial attempt was to use surface normal information generated from stereo data to grow the point to its maximum flat window relative to its surroundings but not to exceed a given window size.  The reason for growing the window to its maximum flat area is because the tracking algorithms assume the window to be tracked is a flat area. However, due to noise in the stereo data at 10 meters away, setting the proper threshold for the window growing has not proven to be very reliable so far.  As an alternative, we now use three preset affine window template sizes around the selected target. The sizes are 10×10, 20×20, and 40×40. The affine matcher starts with the largest window and uses the result to seed the smaller windows to increase the accuracy of the tracked point.  If a refinement step fails, the algorithm discard the result and revert to a less precise but successful match of the larger window.

· Drive the Rover: After the above initial steps which are only done once, the software enters the main tracking loop.  The tracking loop completes when the rover is within a specified distance from the tracked target (e.g. 2 m exit criteria).  Fault conditions can also cause the tracker to exit the loop (see section on fault conditions).  It is important to note that commanding the rover to drive is independent of the target tracker.  While driving can occur independently, in this delivery the drive step is part of the loop because no the navigator (with obstacle avoidance) is not part of the delivery.  The rover locomotion system read commands from a file and drives the rover in arc segments stopping at specified fix intervals (after covering a specified arc length).  At each stop interval a series of algorithms are executed to track the target.
· Estimate Pose (using Visual odometry):  Similar to the above step, this is usually part of the navigator. However, for the purpose of testing this delivery this is made part of the main tracking loop.  While the rover is moving a wheel-based pose estimator is collecting wheel odometry data and continuously estimating the rover pose. After the rover comes to a stop, the visual odometry pose estimator is executed using the wheel-based pose estimator as a seed.  The visual odometry algorithm uses the hazard cameras (wide FOV cameras on the rover body) to recover the change in rover pose (or the camera ego-motion).  The visual odometry algorithm tracks a number of image features and computes their corresponding 3D locations. By matching two sets of 3D locations acquired between the start and end of a motion, the algorithm generates an estimate of the camera’s ego-motion which is the same as the change in rover pose.  Because the current implementation acquires new features every frame, error accumulates as the rover traverses.  The error in pose estimation is usually on the order of 2 – 3% (see Huntsberger et al. “Visual Odometry Validation Report”).  If the visual odometry algorithm fails, the software reverts to the wheel-based odometry estimate for rover motion.  

· Stereovision:  This delivery uses the JPL stereo algorithm which generates a full depth map from the image pair.  We only require the depth of the pixel for the 2D target coordinates (or a window surrounding the target for the previous step if surface normal region growing is used).

· Predict Target Location:  Using the rover pose from the above step, this algorithm computes the predicted 3D location of the target relative to the rover. Given the original 3D target position relative to the rover and the 3D estimated motion of the rover, we calculate the estimated, current 3D target position.  Using known mast kinematics properties, we calculate the mast pointing direction that would center the 2D target in the next set of camera images.  If odometry is inexact, the pointing should still bring the target close enough that the 2D tracker will be able to find it.  If stereo data is not available for that step, then revert to the previous 3D data. If a series of steps fail to produce 3D data, then the algorithm will fail.

· Point Mast:  Given the pointing direction, we use the mast kinematics to compute the pan/tilt angles.  We have developed precise kinematics (working with the Instrument Placement Validation task) (W. Kim “Precise Mast Kinematics”) that take into account the misalignments due to the camera models.  The current delivery however uses a simplified and approximate kinematic solution that assumes aligned cameras.  The updated delivery will provide the option for precise kinematics.

· Match using Normalized Cross Correlation (NCC):  Having centered the feature in the left camera image, the first matching step is to use the Normalized Cross Correlation to relocate the feature in the new image.  A template of 20×20 pixels of the target from the previous image is created. This template is created at every step. It then matches the template to the new image searching a window of 100×100 at pyramid level 1 (equivalent to a 200×200 window at full resolution of 1024×768).  The template size and searchable window size are settable in a configuration parameter file.  The highest score indicates the best match.  The output of this algorithm is a new estimate of the 2D location of the target.  If the NCC matching fails, the algorithm will revert to predicted target location based on the pose estimate and mast pointing accuracies.  A step can be added to verify that the corresponding 3D location of the target is within a specific error bound of the predicted location derived from the rover pose estimate.  This will be part of an updated delivery.

· Match using Affine Tracker:  Using the NCC estimate for the new target location in the image, this step refines the target location based on the KLT template of the originally selected target.  In fact, three KLT templates of 10×10, 20×20, and 40×40 are created once the target is selected.  These templates are not updated. This step starts refining the target location using an affine matcher on the 40×40 template.  It then uses the result to seed an affine matching for the 20×20 template. Then it does the same for the 10×10 template. If a step fails, the algorithm uses the previous successful match. If the largest 40×40 template matching fails, the algorithm reverts to the NCC estimate which is less accurate. Each refined match is verified to be an improvement on the previous step. An additional step can be added to verify that the corresponding 3D target location is within a specified error bound. This step will be added in an updated delivery
5.5 Usage

Developing in the CLARAty environment (check out of cvs repository):

· Download and modify the parameter file 

· Download an example parameter file 

· Download and update the left and right camera models (these are the standard models translated to the mast frame (center of the pan/tilt axis)) 

· Download the example drive sequence file and update the drive_commands_filename 

· Update the display_server to the host machine you are using 

· Check out the code 

· yam setup -nolink -nobuild -c YAM.config -branch maxb -d <sandbox>
· cd <sandbox>
· gmake all (for both a host machine (Linux) and rocky8)

· (note that not all the binaries for all the code will build; however the necessary ones will build; also, there are many warnings printed out that can be ignored for now)

· Run the host GUI 

· On a host machine (Linux)

· cd bin/
· Drun <host architecture>/run_tracker_display r8yard
· (note that you must restart the gui every time you restart the tracker)

· Run the tracker 

· (from any machine in the Mars Yard) 

· rlogin r8yard |& tee <logfile> 

· (from a Sun machine, with the rover powered on) 

· cd bin/ix86-vx5.5-gcc2.95 

· cle windsh r8yard 

· ld < run_approach_tracker.so 

· sp_track(<parameter file>) 

· Make sure to use the full path to the paramter file 

· Images will be saved to /home/claraty/mast_{pan,nav}_{left,right}-<iteration>.pgm 

· If the tracking ever fails, please save the images and rlogin log and point maxb to this data 

· To move the rover around, you can 

· (from a windsh as started when running the tracker) 

· ld < test_r8_locomotor.so 

· move_arc(<distance>, <heading change>) 

· where distance is specified in meters 

· and heading change is specified in radians (positive clockwise) 
5.6 Engineering Data Products

The data products are the 2D and 3D coordinates of the target in the final image, a copy of the final image with a cross at those coordinates, and a copy of the original image a cross at the initial (designated) 2D coordinates.  The user can verify that the feature was properly tracked by comparing images, and then can use the 3D position to plan further activities such as instrument placement.

A detailed log of activities is outputted that described the steps of the main loop that is provided as an example for the validation task.  The validation task will modify this as necessary to meet their test requirements. 

6 Fault Protection Software Details

The software is not currently completely fault tolerant.  However, here we consider potential faults and remedies. Any detected faults should probably result in an error message.  The fault wherein NCC finds no suitable match is divided into several lines to show appropriate cause/remedy pairs, but there is no identified method to determine the cause of failure, so a single remedy must handle all causes. Here is a description of the potential remedies.

· Disable Tracking: In general, the “predict target location” step combines feature 2D position and stereo depth at that 2D position to determine the target’s 3D position.  If the 2D information is not available, the step could simply return the 3D estimated location produced by visual odometry for the purpose of camera pointing.  Expect degraded performance due to noise in initial ranging and accumulated error in visual odometry.

· Disable 3D recalculation: If depth is unavailable but 2D tracking still works, the “predict target location” step could combine new 2D (direction) data with estimated 3D location in a probabilistic way to improve the 3D estimate.  It could also retain independent notions of 2D and 3D position, so that it could provide a 3D estimate for camera pointing and navigation, but at the end give a 2D tracked target position to the user at the end of the traverse.  Using the 3D estimated position will degraded performance, because the initial 3D ranging from 10m away will likely be worse than the final ranging from 2m away, and because visual odometry accumulates some error.

	Fault
	Cause
	Remedy

	No GUI
	Host/communication failure
	Fix network

	No initial image in GUI
	Camera/electronics/communication failure
	Fix hardware

	Lose right image stream
	Camera/electronics failure
	No 3D data (see fault below)

	Lose left/both image stream
	Camera/electronics failure
	No image data
Visual tracker fails – disable tracker or rely on pose estimation (with visual odometry from hazard cameras)

	Target has no 3D depth initially
	Target is in stereo shadow (likely to occlude as rover moves), is untextured (likely untrackable), or was eliminated by stereo filters (likely to never have 3D depth data).
	Potential: force user to select a different target, or track a nearby point and infer position of the selected point.

	Target has significant depth discontinuity initially
	Target is not a 2D pattern and may dissipate (become untrackable) as the rover approaches.
	Potential: force user to select a different target, or track a nearby point and infer position of the selected point.

	Stereo depth map does not provide depth at new target 2D position
	Target is about to be occluded, has become untrackable, or has been filtered out by stereo.
	Use previous 3D location. If a series failures occur, rely on 2D tracking results only

	Target moves significantly in 3D, not along original/ current line of sight 
	NCC or affine tracking find incorrect spot.  
	Current: Ignore – could be caused by bad odometry, and tracker should detect its own failure to find a suitable match.

	NCC finds no suitable match


	Feature is not in image, after failure pointing camera, after failure in mast pointing, visual odometry, or stereo ranging
	Current: rely on pose estimation
Potential: Repoint camera and try again

	
	Feature not in NCC window, after failure pointing camera, after failure in mast pointing, visual odometry or stereo ranging
	Current: rely on pose estimation
Potential: extend search area and try again, or use Adaptive View-based Matching

	
	Feature has dissipated/morphed (violates operational constraints)
	Current: rely on pose estimation
Potential: Disable tracking, either permanently (future matches would be false matches) or for this frame (consistent with other failure modes, trusting NCC to recognize failure) 

	
	Feature just not detected
	Current: rely on pose estimation
Potential: Disable tracking for this step only.  If the feature is occluded, it may reappear and be detected later.

	Affine tracking finds no suitable spot after NCC finds one.
	NCC accepted a weak correlation peak, hoping affine tracking would find a better fit 
	Current: use NCC estimate

Potential: attempt affine tracking near secondary NCC peaks, or failing that treat as if NCC found no suitable match.


7 Operational Constraints

1. Bright light.  The visual odometry component will likely fail with indoor illumination

2. Calibrated cameras.  Stereo and visual odometry require good camera models.

3. Image Texture.  Stereo, visual odometry, and 2D tracking only work when images have sufficient local intensity variation.  The latter is a function of scene texture, focus, illumination, etc.

4. Occlusion.  The algorithm is not designed to handle an occluded feature.  It can handle the target leaving the field of view, as long as repointing the mast cameras brings the target back into view.

5. Valid feature.  The algorithm is not designed to approach a flat target.  If the target feature actually consists of objects at various depths, the feature will dissipate as the rover approaches, so its location (and the task of tracking that location) becomes undefined.









































































Figure � SEQ Figure \* ARABIC �1�: Example of Visual Target Tracking using mast mounted cameras 











Target Tracking





Designated Target





(b)












































Target








(a)























Figure � SEQ Figure \* ARABIC �2�: Overview of the Target Tracking Algorithm
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