Attachment: Technical Description of CLARAty

An overview of the CLARAty software packages in the Functional and Decision Layers are illustrated in Figure 1. In the Function Layer, there are about 20 packages, of which four of them are rover adaptations, currently consisting of several wheeled rover prototypes that include the Rocky8, FIDO, K9, and Rocky7 rovers. The Decision Layer has 5 modules.


Figure 1:  CLARAty Software Packages
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Table 1. Detailed listing of the CLARAty Software items

	
	Package
	Description/Features & 

Performance Limitations
	Inputs & Outputs
	Use 
	Notes/
Comments

	1
	Base
	
	
	
	

	1.1
	Share
	· Common definitions

· Math constants

· Function operators

· Display functions

A few basic common parameters and functions defined in header files for CLARAty software packages 
	
	General use

(commercial example: MATLAB)
	Basic Infrastructure



	1.2
	Array
	· 1D arrays

· 2D arrays

· Sub arrays

Array data and memory management. Creation and manipulation of 2-D and 1-D arrays of numeric and non-numeric template elements.

Performance:  very generic class, not specialized for efficiency
	Inputs: matrix array data

Outputs: resulting array, Boolean, display
	General Use;

MATLAB
	Basic Infrastructure 

	1.3
	Matrix
	· 2D matrices

· 1D matrices (Vectors)

· Fixed size matrices

· Rotation matrices

Standard matrix arithmetic. Inherited or derived template class of Array_2D. It supports mathematical matrix operations such as +, -, *, /, transpose, and inverse. For efficiency it also supports special-case matrices such as vectors, fixed-size matrices, and rotation matrices. The rotation matrix can be specified by three Euler angles. 

Performance: Its elements must be numerical. For computational efficiency, special classes are also defined.
	Inputs: matrix array data or Euler angles

Outputs:

Results after matrix operations
	General Use;

MATLAB
	Basic Infrastructure

	1.4
	Point
	· 2-D points

· 3-D points

Standard 2-D and 3-D vector arithmetic and algebra. Supports 3-D or 2-D vector operations such as scaling, addition, subtraction, dot product, cross product, magnitude

Performance: Its elements must be numerical.
	Inputs:

2-D or 3-D point data

Outputs:

Results after point vector operations
	General Use;

MATLAB
	Basic Infrastructure; 

Reference: 

[Paul, 1981; Brad, 1982; Craig, 1986; McKerrow, 1991]

	1.5
	Transforms
	· Homogeneous transforms

· Quaternions

Efficient homogeneous transform and quaternion classes templatized by element type.

Location is HTrans<double>.

Performance: For computational efficiency, the 4x4 Homogeneous Transform uses a 3-D Point and a 3x3 rotation matrix internally.
	Inputs: 3-D point & 3 angles for HTrans; 4 elements for quaternion

Outputs: resulting transform
	Commercial example:

Adept Technology, V+ programming language;

Matlab
	Basic Infrastructure 

	1.6
	Frame
	· Coordinate frames

Multi-thread-safe relational data structure that connects homogeneous transforms in a coherent tree. Efficient coordinate transformation that can be represented by either Homogeneous Transforms or Quaternion/Point Pair.

It establishes tree relationship between frames.

Performance: supports systematic generation and retrieval of relations between frames
	Inputs: parent frame, location

Outputs:

Status or resulting frame
	General use
	

	1.7
	Device
	· Device

· Facility for device operations such as power switching, generic status reporting, and mounting configuration
	
	
	

	1.8
	Resource
	· Timers

· System Threads

System support for timing and multi-threaded applications;

get_time_elapsed.
	Output: time elapsed
	Basic classes such as in ACE, which is a commercial toolkit for developing portable applications. 
	Reference: [Schmidt, 2002]

Partially implemented.



	1.9
	Containers
	· Linked lists

· Maps

· Hash Table

· etc.


	
	Similar to C++ Standard Template Library
	Partially implemented

	1.10
	State & Telemetry
	· State data logging

· Generic interface for device telemetry
	
	
	Partially implemented

	1.11
	Qt Display Interface
	· Qt_util

· Qt_frame

· Qt_manipulator

· Qt_locomotor

· Qt_rover

· Qt_camera

Display interfaces using Qt for visualization and control of various components
	Outputs: Qt displays
	TrollTech’s Qt is a commercial software toolkit for multi-platform C++ GUI (graphical user interface) 
	Reference: [Dalheimer, 2002]

	2
	Motion Control
	
	
	
	

	2.1
	Motor
	· Open-loop motors

· Controlled motors

· Coordinated motion

Basic single-axis motor control. It controls the operation and functionality of a motor. Motor coordination synchronizes the motions of multiple motors. Methods specific to different motor implementations are defined in Motor_Impl.


	Inputs: desired motor position, velocity, acceleration, filter parameters, etc.

Outputs:  controlled motion and report status
	Basic motion control software

(commercial examples:

Animatics, Galil, etc.)
	

	2.2
	Trajectory
	· Trajectories

· Trajectory generators

Generates a trapezoidal profile
	Inputs: final position, max_vel, & acceleration

Outputs: trajectory profile
	Commercial examples:

Adept V+ operating system, Seiko Robotics OS (each industrial robotic platform has one)
	

	2.3
	Coordinated Systems
	· Motor coordinators
	
	
	Partially implemented

	3
	Hardware Drivers
	
	
	
	

	3.1
	Motion Controllers
	· HCTL 1100 motor controller

· LM629 motor controller

Supports functions for motor controller chips
	Inputs: motor control parameters

Outputs: control motor and report status
	HP/Agilant HCTL 1100 spec. sheet;

National Semiconductor

LM629 spec. sheet
	

	3.2
	Frame Grabbers & Drivers
	· Imagenation CX100 frame grabber

· Imagenation PX610 frame grabber

· 1394 camera driver

Interface functions for various frame grabbers
	Inputs: frame grabber control parameters

Outputs: grab camera image and report status
	Imagenation frame grabber manuals
	

	3.3
	I/O Boards & Chips
	· VPAR10 digital I/O board

· Sensoray S720 digital I/O board

· VADC20 analog input board

· MAX186 analog to digital converter

· MAX528 digital to analog converter

Interface functions for various DIO and AIO boards
	Inputs: DIO or AIO related parameters and/or data

Outputs: status or data read
	Manuals for various I/O boards;

Maxum A/D and D/A spec. sheets
	

	3.4
	Custom Boards
	· Widget board motion control

· Widget board firmware

Interface functions for the custom widget board with I2C bus, DIO, AI, AO, and motor controller; it uses HCTL 1100, MAX186/528
	Inputs: widget board related parameters

Outputs: status or data read
	See 3.1 and 3.3 above
	JPL-built board using readily available commercial chips

	3.5
	Other
	· VISA VME to ISA converter

· I2C master controller

· PCI controller

· Crossbow DMU inertial measurement unit

Supports interface functions for the hardware listed above
	Inputs: hardware related parameters

Outputs: status or data
	
	

	4
	Sensor
	
	
	
	

	4.1
	IMUs
	· Generic inertial measurement unit infrastructure

Get IMU measurements data
	Outputs: IMU measurements data such as roll/pitch/yaw angle, rate, acceleration
	
	

	4.2
	Specific IMUs implementations
	· Crossbow DMU driver
	
	Crossbow DMU is a commercial motion and attitude sensing unit.
	

	4.3
	Orientation Sensors
	· Generic electronic tilt sensors

· Compasses
	
	
	Partially implemented

	4.4
	Rate Sensors
	· Generic gyros structure
	
	
	Partially implemented

	4.5
	Temperature Sensors
	· Generic temperature sensor
	
	
	Partially implemented

	4.6
	Voltage & Current Sensors
	· Generic voltage and current sensors
	
	
	Partially implemented

	4.7
	Power System Manager
	· Power system manager
	
	
	Partially implemented

	5
	Input/Output
	
	
	
	

	5.1
	DIO
	· Digital input/output

DIO is used to control a single port, several ports, or a combination of parts of certain ports.
	Inputs: desired bit pattern

Outputs: actual bit pattern
	All robotic OS’s have I/O control and management
	

	6.2
	AIO
	· Analog input/output

AI reads data from analog-to-digital converter, while AO writes data to digital-to-analog converter.
	
	
	

	6
	Communication
	
	
	
	

	6.1
	Socket
	· Socket UDP/TCP protocols

Send and receive messages through sockets; Uses standard network protocol
	Inputs: input message 

Outputs: output message
	
	Example source codes widely available (e.g., Sun manual)

	6.2
	I2C
	· I2C bus interface

Send and receive messages through I2C bus
	Inputs: input message

Outputs: output message
	
	

	6.3
	Serial driver
	· Serial interface driver

Send and receive messages through serial I/O lines
	Inputs: input message

Outputs: output message
	
	

	7
	Manipulation
	
	
	
	

	7.1
	Manipulators
	· Limited DOF manipulators

· Manipulator_Impl

· Redundant manipulators

· End effectors

Serail link manipulator operation. Includes stow and unstow of a manipulator as well as joint and Cartesian motions using forward/ inverse kinematics; Methods specific to different manipulator implementations defined in Manipulator_Impl
	Inputs: manipulator control parameters

Outputs: control the manipulator and report status
	Basic manipulator control software;

Commercial examples:

Adept, Fanuc, Yamaha, Seiko, Kuka
	Reference: [Paul, 1981; Brad, 1982; Craig, 1986; McKerrow, 1991];

Redundant manipulator not implemented

	7.2
	Sensor-based Manipulation
	· Stereovision based manipulation

· Vision/tactile manipulation
	
	
	Vision/tactile manipulation partially implemented

	8
	Locomotion
	
	
	
	

	8.1
	Wheel Locomotion
	· 2-D wheel locomotion

· 3-D Rocker Bogie Locomotion

· Continuous driving modules

· Motion sequences

Wheel based locomotion and driving. It supports position driving (crab and arc motion) and velocity driving of a rover vehicle that can be fully, partially, or skid steered.

Performance: It either steers or drives wheel motors.  Currently it does not steer or change heading while driving. 
	Inputs: desired vehicle position, heading, or velocity

Outputs: drive the vehicle and report status
	
	Reference: 

[Nesnas, 2000]

	8.2
	Legged Locomotion
	· Legged Locomotors
	
	
	Partially Implemented

	8.3
	Hybrid Locomotion
	· Wheel/Legged Locomotion
	
	
	Partially implemented

	9
	Vision
	
	
	
	

	9.1
	Image Related Data Structures
	· Image

· Color Image

· Camera Image

· Image Sets

· Image Pyramid

· Point Cloud for 3D points

Image inherits data structure from Array_2D and math operations from Matrix. It adds concept of pixel and sub-pixel sampling. Image Sets and Pyramid are image containers.
	Inputs: images or image parameters

Outputs: images, data, parameters, or status
	Basic image processing functionality; available in MATLAB
	Image sets and pyramid partially implemented

	9.2
	Cameras & Image Acquisition
	· Camera (single)

· Multi Cameras (synchronized)

· Camera Impl’s

· Camera Pair

· Camera Models

Wrappers around existing drivers; no new functionality added. Multi-Cameras enables synchronized image acquisition. Camera Impls are hardware-specific implementations such as Camera_Impl_Linux1394 and Multi_Impl_Linux1394. Camera Image is an Image with the Camera Model and the frame number.
	Inputs: camera control or model parameters

Outputs:  images, data, parameters, or status
	
	Camera Pair partially implemented

	9.3
	Camera Calibration
	· Camera calibration

Camera calibration using CAHVOR [JPL] or Tsai/matrix [OpenCV, SRI] model. All implementations are published and/or distributed as a library
	Inputs: camera model selected

Outputs: camera model parameters after calibration
	Intel’s OpenCV
	Partially implemented

Reference: [Intel, 1999]

	9.4
	Image Operations and Processing
	· Image_Op Interface

· Convolve_Op

· Gradient_Op

· 2-D image processing

· Filtering & smoothing 

· Edge detection

· Blob detection

· Corner feature detection

Image_Op Interface supports image filtering & smoothing. Examples include convolution and gradient operations, which can be used for edge, blob, or corner detection.
	Inputs: images and parameters for operation

Outputs: images after the operation
	Basic; all available in MATLAB vision processing package
	

	9.5
	Image related file operations and display
	· Image IO loads and saves images to various formats. 

· Image Converter converts to other library implementations (OpenCv, JPLPic).

·  Image Displayer displays the image.
	Inputs: images or image parameters

Outputs: images, data, parameters, or status
	Basic image I/O and display functionality; available in MATLAB
	

	9.6
	Machine Vision Interface
	· Stereovision Interface

· Visual Tracking Interface

· Visual Odometry Interface

· Image matching interface

An interface to support various implementations of stereo vision algorithms
	
	
	

	9.7
	Stereo Vision Implementation
	· JPL stereo engine

· SRI stereo engine (commercial)

· Ames stereo engine

Specific implementations of stereo vision algorithms. Stereo algorithms do stereo matching between left and right images, and then computes the range for a given calibrated camera model.
	Inputs: stereo image pair and calibrated camera model

Outputs: disparity map after stereo matching and range map
	SRI provides commercial product SVS  stereo vision
	

	9.8
	Visual Tracking  Implementation
	· 2-D feature detection & tracking

· 3-D feature detection & tracking

· Combined 2-D & 3-D tracking

Basic feature extractions
	
	
	Reference:

[Shi, 1994];

Partially implemented

	9.9
	Visual Odometry Implementation
	· Visual odometry

Estimation of rover motion from tracking rock features and 3-D range data using vision
	Inputs: image sequences

Outputs: estimation of 2-D motion
	
	Reference: [Olson, 2000];

Partially implemented

	10
	Science
	
	
	
	

	10.1
	Spectrometers
	· Generic Spectra classes

· Generic Spectrometer classes

Generic glue code
	
	
	

	10.2
	Science Image Analysis
	· Edge detection

· Horizon detection

· Finding solids

· Finding layers

· Ellipse Summary
	
	
	Partially implemented

	10.3
	Science Spectrum Analysis
	· Carbonate identifier
	
	
	

	10.4
	Science Cameras
	· Special science cameras
	
	
	

	11
	Estimation
	
	
	
	

	11.1
	Kalman Filter
	· Kalman filter implementation
	
	
	Reference: [Balaram, 2000]

	11.2
	Pose Estimator Interface
	· Pose estimator interface

An interface to support various implementations of pose estimators
	
	
	

	11.3
	Pose Estimator Implementation
	· Wheel-based Pose estimator

· Legged-based Pose Estimator

Estimates the vehicle pose (position and orientation) using multiple sensors such as IMU, wheel odometry. Basic estimation: work done by FIDO and Rocky 7 rovers
	Inputs: various sensor readings

Outputs: vehicle pose estimate
	
	Reference:

[Balaram, 2000]

Legged-based Partially implemented

	12
	Navigation
	
	
	
	

	12.1
	Local navigator
	· Generic local navigator structure

Generic interface for specific implementations
	Inputs: desired path, goal to achieve

Outputs: motion sequence to a locomotor
	Commercial example:

MOBILITY software from IROBOT
	

	12.2
	Local Path planner
	· Generic local path planner structure

Generic interface for specific implementations
	
	Commercial example:

MOBILITY software from IROBOT
	

	12.3
	Navigation Implementations
	· MER/GESTALT navigator

· Morphin Navigator (CMU)

· Fuzzy Navigator

Gestalt Navigator does the following steps: 1) generate planes for all cells using range map, 2) evaluate cells to map obstacles, 3) generate path votes, 4) merge votes, and 5) select best arc path
	Inputs: waypoint goal, stereo image or range map

Outputs: determine the path to the goal waypoint
	
	Reference:

[Goldberg, 2002];

Fuzzy Navigator partially implemented

	13
	Path Planning
	
	
	
	

	13.1
	Global Path Planners
	· Generic path planner structure

Generic interface for specific implementations
	
	
	

	13.2
	Global Path Planner Implementation
	· D* path planner (CMU)

· Tangent graph path planner (JPL)

· ISE path planner (CMU)

D* path planner accumulates global obstacle map.
	
	
	D* and ISE path planner partially implemented;

References: [Stentz, 1995; Laubach, 1999, Tompkins, 2002]

	14
	Behaviors
	
	
	
	

	14.1
	Behaviors
	· Basic rover behaviors
	
	
	

	14.2
	Behavior Coordination
	· Arbiters

· Behavior combinators

General mechanism for data fusion from different sensors.
	
	
	

	15
	Simulation
	
	
	
	

	15.1
	Simulator Connectors
	· Interface to ROAMS (Rover Analysis Modeling and Simulation) software

· Rover Sim Connector

· Navigator Sim Connector

· Locomotor Sim Connector

· Motor Sim Connector

· I/O Sim Connector

· IMU Sim Connector

Interface modules only.
	
	
	

	15.2
	Simulation Implementation
	· Communication protocol

· Message syntax and command dictionary
	
	
	

	16
	Adaptations to Rovers
	
	
	
	

	16.1
	Rocky8 


	· 
	
	
	

	
	Rocky8 Specialized Physical Components
	· Rocky8 Motors

· Rocky8 Cameras

· Rocky8 IMUs

· Rocky8 Hardware Map

· Rocky8 Digital I/O

· Rocky8 Analog I/O
	
	
	Hardware specific; not applicable if you do not have this platform

	
	Rocky8 Specialized Functional Component
	· R8 Locomotor

· R8 Constrained Locomotor

· R8 Navigator

· R8 Rover
	
	
	Hardware specific; not applicable if you do not have this platform

	16.2
	Rocky7
	
	
	
	

	
	Rocky7 Specialized Physical Components
	· Rocky7 Motors

· Rocky7 Cameras

· Rocky7 Accels

· Rocky7 Gyros

· Rocky7 Hardware Map

· Rocky7 Digital I/O

· Rocky7 Analog I/O
	
	
	Hardware specific; not applicable if you do not have this platform

Reference: [Volpe, 1999]

	
	Rocky7 Specialized Functional Component
	· R7 Locomotor

· R7 Constrained Locomotor

· R7 Navigator

· R7 Rover
	
	
	Hardware specific; not applicable if you do not have this platform

	16.3
	FIDO
	
	
	
	

	
	FIDO Specialized Physical Components
	· FIDO Motors

· FIDO Cameras

· FIDO Accels

· FIDO Gyros

· FIDO Hardware Map

· FIDO Digital I/O

· FIDO Analog I/O


	
	
	Hardware specific; not applicable if you do not have this platform;

To be implemented

	
	FIDO Specialized Functional Component
	· FIDO Locomotor

· FIDO Constrained Locomotor

· FIDO Navigator

· FIDO Rover
	
	
	Hardware specific; not applicable if you do not have this platform;

Partially implemented

	16.4
	K9
	
	
	
	

	
	K9

Specialized Physical Components
	· K9 Motors

· K9 Cameras

· K9 Accels

· K9 Gyros

· K9 Hardware Map

· K9 Digital I/O

· K9 Analog I/O

K9 is NASA Ames rover platform
	
	
	Hardware specific; not applicable if you do not have this platform



	
	K9

Specialized Functional Component
	· K9 Locomotor

· K9 Constrained Locomotor

· K9 Navigator

· K9 Rover
	
	
	Hardware specific; not applicable if you do not have this platform

	17
	Decision Layer
	
	
	
	

	17.1
	Planner Implementations
	· CASPER – Continuous Activity Scheduling, Planning, Execution and Re-planning using an automated scheduling and planning engine

An integrated planning and execution system that supports continuous modification and updating of a current working plan in light of changing operating context.

Performance: generates initial plan on the order of minutes. Re-planning takes tens of seconds.
	Inputs: science goals, engineering goals, rover model, rover initial state, resource and state data, activity execution status 

Outputs:

Sequence of activities or commands
	Commercial example: STK (Satellite Toolkit) from Analytical Graphics, Inc; ILOG Optimization Suite, by ILOG, Inc.
	Reference: [Chien, 1999; Chien, 2000]

	17.2
	General Planner Infrastructure
	· Basic planner infrastructure

Will contain basic planner infrastructure and support code.  
	
	
	Partially implemented.

	17.3
	Executive

Implementations
	· TDL - Task Description Language (CMU)

Provides a language and framework for the development of robot control programs.  Includes explicit syntactic support for task-level control capabilities such as task decomposition, synchronization, execution monitoring and exception handling.
	Inputs: control tasks, rover model

Outputs: rover commands
	Commercial example: SCL (Spacecraft Commanding Language), by Interface Control Systems, Inc.
	Reference: [Simmons, 1998]

	17.4
	General Executive Infrastructure
	· Basic executive infrastructure

Will contain basic executive infrastructure and support code.
	
	
	Partially implemented.

	17.5
	Planner and Executive Integrations
	· CLEaR – Closed-Loop Execution and Recovery

Provides a framework for performing unified planning, scheduling, and execution by balancing deliberative and reactive reasoning.  Closely integrates the CASPER planning system with the TDL executive.
	
	
	

	17.6
	Activity Database
	· General activity database structure

Provides a central database for containing information on plan activities.  This information could include activity definitions, activity instantiations, constraints on activities, etc.  This information would be accessible by both planning and executive components.  
	
	
	Partially implemented.

	17.7
	Rover Models
	· Description of rover activities and their constraints on states, resources and other activities.

Includes models developed for CASPER and TDL.
	
	
	Application and platform specific. Models are specific to rovers such as Rocky7 and Rocky8.

	17.8
	Interfaces
	· Functional layer interface

Provides a general API and framework for relaying information between Decision Layer and Functional Layer.  Types of information relayed include commands, queries, and state and resource data.

· General planner/executive interface

Provides a general API and framework for relaying information between the planning and executive components of the Decision Layer.  Types of information relayed include activities, commands, queries, and state and resource data.


	Inputs: commands, activities, resource and state queries

Outputs: activity execution status, resource and state data
	
	Basic Infrastructure.

General planner/ executive interface is partially implemented.

	
	
	
	
	
	


1. Base Package

The base package contains basic infrastructure components.  These components are not themselves novel or algorithmically interesting, and have no commercial value.  They fulfill common needs encountered by any robotics project, and robotics projects will generally contain analogs to these items, either drawn from a variety of available free and commercial software bases, written custom by the project groups themselves, or a combination of both.  As a result, such projects contain many analogous, but incompatible, classes to fill these common needs.  This package contains the particular implementations used for the CLARAty project.  Their value comes from the fact that they provide a common framework allowing the CLARAty packages to be consistent and self-contained, avoiding unnecessary duplication of commonly needed classes, and allowing the various CLARAty components to communicate with each other.  

As an example, consider classes to represent and operate on common mathematical constructs, such as matrices, points, and coordinate transformations.  Any robotics project will need these, and there are a wide variety of solutions available, including the commercial MATLAB mathematics environment, the MTL (Matrix Template Library) available for free download from http://www.osl.iu.edu/research/mtl, the linalg linear algebra library available for free download from sourceforge http://sourceforge.net/projects/linalg, and many others.  

Since the need for math classes is common, but there the is no single standard, there is a profusion of incompatible software implementations filling the same niche, each with its own set of benefits and drawbacks.  Given any set of robotics projects that were developed in isolation from one another, chances are that most will use incompatible math implementations, and this is a significant barrier to collaboration.  

To illustrate why this is a problem, imagine that there are two robotics groups who have decided to work on a project together.  Group A has a superior navigation method, and group B’s robot is mechanically superior at driving over rough terrain.  These two projects grew in isolation from one another, but now the two groups want to put what they have together, since the result of having B’s robot driving around using A’s navigation method should be better than what either group has by itself.  Both A and B will have software that needs to be linked together in order to do what they need to do.  If A and B used different math implementations, which is a likely scenario, you end up with three types of problems. 

One problem is that the combined program that you end up with will be considerably bigger than it needs to be, since instead of having one copy of the software which deals with math, you have two, and each takes up space.  The second, which is more serious, is that when you try to link these two pieces of software together this can lead to conflicts.  For example, both have a type called ‘Matrix’, but these are not the same, and the compiler will not let you put the software from A and B together until you make changes to deal with this.  The third, and most critical, is that the two pieces of software will have incompatible ways of representing the same information, so they won’t be able to talk directly to each other in a meaningful way.  For example, both will have some way of representing a place to drive to --  if you were to draw an X on the ground where you want the robot to go, both would have a way of representing where that X is.  In this example, A’s software will generate a position to go to, and give that to B’s software, which will make tell the wheels to spin appropriately to move the robot there.  Each will represent this position using a mathematical representation of some sort, but the actual software structures they use to represent it will be different and incompatible.  When A’s navigation software wants to tell B’s robot to go somewhere, it will not be able to do it directly.  It will be necessary to create a third piece of software which converts A’s position commands into something B can understand, and B’s position reports into something A can understand.  That third piece of software will need to incorporate the math packages from both in order to do this conversion, and that piece will probably have to be written specially for this purpose, greatly increasing the time and cost involved for A and B to try this experiment.

This scenario plays out in many areas, not just with math libraries, and the situation gets worse as more collaborators are added to the mix.  What is needed is a ‘lingua franca’, a central representation that all can understand, and use to communicate with each other.  CLARAty is working to fill that need, and at the same time provide implementations that CLARAty itself can use to be consistent and self-contained.  Hopefully new projects could use the CLARAty implementations to fulfill these common needs in a way that enhances interoperability from the beginning.

1.1. Share Module

The share module provides common definitions to bridge incompatibilities and fill in gaps between different compilers and operating systems.  It also provides simple math constants and macros (such as absolute value) and support for defining functors, operators, and other C++ constructs in a consistent manner across CLARAty modules.  The items in this module are analogous to standard C++ library and standard template library (STL) facilities, and primarily fill in gaps rather than providing fundamentally new capabilities.

1.2. ( - 1.6) Array, Matrix, Point, and Transforms, and Frame

These modules provide classes to represent and operate on common mathematical constructs, as discussed in the above example.  Array provides storage for one or two dimensional arrays.  Matrix adds mathematical operations for arrays.  Point represents and provides operations on two- and three-dimensional points: (x, y) and (x, y, z).  Transforms provides representations and operations on six degree-of-freedom locations, (x, y, z, roll, pitch, yaw).

Frame provides representations and operations on a hierarchical tree of coordinate transformations in order to represent positions in space and kinematics.  For example, your elbow is attached at a certain position and orientation with respect to your shoulder, as is your hand to your elbow.  When you move just your shoulder, your elbow and hand move with respect to the rest of your body, but stay the same with respect to each other.  Frame provides a way to represent this type of relationship, and convert between reference frames.  For example, if you know where your elbow is with respect to your shoulder, and where your hand is with respect to your elbow, this could calculate where your hand is with respect to your shoulder.

1.3. Device Package

This package provides the base classes for the Generic Physical Components in CLARAty (such as cameras, locomotors, instruments, etc.). These classes provide multi-thread safe mechanisms for locking, managing resources, and logging telemetry. Generic physical classes also include power systems and power-related devices such as power sources, batteries, and battery chargers.

A generic physical component (GPC) is a class that defines the structure and behavior of a physical object in an abstract sense. Some of these classes have partial implementations since they are eventually attached to physical/simulation objects that complete their implementation. The objects to which they attach are of the same type. These classes can be active, i.e. they provide their own threading model. Examples of such components are: Motor, Joint, Wheel, Arm, Mast, Locomotor, Rover, Camera, FilterWheel, Gyro, DigitalIO, AnalogIO, Socket, and SunSensor. These components appear at different levels of granularity in the Functional Layer. 

The characteristics of these generic components are:

(1)  They represent an abstract view of a physical entity. 

(2)  They attach to concrete physical classes of the same type. The physical classes complete the implementation of the generic class interface. 

(3)  They provide generic public interfaces that supports different physical implementations. The interfaces define the functionality and services of the component. 

(4)  They provide the runtime model for component’s operation. 

(5)  They manage local atomic resources and resolve local conflicts. 

(6)  They encapsulate the states of a component and provide access to the states through their public interface. The Decision Layer can query any state of a component at any time.

(7)  They provide local state estimation based on information available within the scope of the component. They may attach to external generic estimators (e.g. Kalman Filter). 

(8)  They provide resource usage prediction in response to queries from the Decision Layer. 

(9)  They may have internal state machines. 

(10)  They may include or reference other generic physical components. Such components are made publicly accessible to allow access to subordinates. 

The “device” module uses the “telemetry” module and provides generic interfaces for accessing telemetry or parameters from any device in a consistent manner without losing additional specialized information.

A Device_Group superclass is a generic interface that allows the aggregations of single devices and other device groups. This class includes templatized operations to allow safe query and retrieval of subsets of devices within a Device_Group compatible with an arbitrary sub-classed Device interface without prior knowledge of or dependence on those subclasses. 

CLARAty also has a factory for mapping Device types to functions for creating appropriate graphical panels inheriting from Qt_Device, and a graphical interface using the Qt toolkit for browsing Device_Groups which will bring up the most specific available panel for a given device using that factory, without any dependence of these tools on the Device or Qt_Device subclasses themselves.

1.4. Resource

This module provides additional support for representing and manipulating system resources, such as time and multiprocessing support (threads, mutexes, condition variables, etc) for when there are needs within CLARAty that are not fully provided by the standard facilities.  Analogous support is already present in the system libraries, the POSIX Threads library, and ACE, the Adaptive Communication Environment, and this module primarily fills in gaps or provides simple extensions to those facilities rather than providing anything fundamentally new.

1.5. Containers

This module provides additional support for representing and manipulating containers, such as linked lists, maps, hash tables, and trees.  These are structures for storing and accessing sets of items.  Analogous support is already present in the Standard Template Library (STL), but STL is not supported properly on all systems at this time, and some data structures, such as trees, are not well supported by STL.  This module primarily fills in such gaps or provides simple extensions to those facilities rather than providing anything fundamentally new.

1.6. State and Telemetry

These modules provide a consistent interface for representing, transmitting, storing, and logging data generated by devices and other processes in CLARAty.  Devices include items such as cameras, motors, arms, spectrometers and so on. Components use state variables for logging, tracking, and recovery strategies. Components can have numerous state variables depending on what states are interesting to a particular application. State information can have different forms. It may be contained in a software variable or a hardware register. To track hardware registers, state variables are created to mirror these registers. Doing so enables tracking and logging of a particular state for planning and recovery purposes. Typical components can have tens of states. Examples of state for a device such as a motor are: position, velocity, acceleration, and control mode.

The state mechanism keeps track of transitions, time-tags and logs state history. Internal state machines keep track of current states and allowable state transitions. The State  can attach to an external StateHandler, which provides more functionality for all states of the system. The StateHandler class provides global operations on states, such as periodic monitoring of any selected subset of the system’s states. Such state tracking can be selectively disabled or eliminated for applications that do not require this feature. 

Analogous facilities are available in the Adaptive Communication Environment (ACE) (http://www.cs.wustl.edu/~schmidt/ACE.html) for logging system data and ACE types.  These modules extend those capabilities to support the needs of CLARAty types. 
1.7. Qt Display Interfaces

These modules provide user interface components to view and manipulate the state of CLARAty objects, such as frames, motors, manipulators, locomotors, cameras, etc. These modules use TrollTech’s Qt software toolkit for multi-platform C++ GUI (graphical user interface) development.  Analogous graphical state viewing and manipulation interfaces exist for a wide variety of free and commercial devices, such as the Saphira interface ActivMedia provides for the robots it sells, the PIC-SERVO interface J.R. Kerr provides with the motor controllers he sells, and the Coriander interface freely available for use with Linux 1394 cameras.  These modules provide similar functionality for use with objects adhering to CLARAty interfaces, such as those for motors, manipulators, locomotors, cameras, etc.

2. Motion Control Package

The motion control package is responsible for controlling and coordinating electrical motors. Such motors can be either brushed or brushless DC motors.

2.1  Motor

The Motor module contains software for providing an interface to a variety of motor and their controllers. It also defines the behavior of a single controlled motor. Such behavior includes powering the motors (on, off), controlling the trajectory of the motor by changing position, maximum velocity and acceleration profiles, and setting the home position. This module also provides functionality for querying the current position, velocity, and acceleration profiles for the motors. It also contains built-in checks and queries on the current status of a single motor. These include queries such as whether the motor is moving, is off, or is in an error state. An abstract list of functions is provided below.

Main functions of the Motor Control Package are:

· on()


// turn on the motor drive

· off()


// turn off the motor drive

· start()


// start the motor

· stop()


// stop the motor

· set_home()

// set the current motor position to zero

· set_control_mode()
// POSITION or VELOCITY CONTROL

· set_position()

// set desired motor position

· set_velocity()

// set desired maximum velocity

· set_acceleration()
// set desired acceleration

· wait_until_done()
// wait until motion is % complete

· get_real_position()
// get the current motor position

· get_real_velocity()
// get the current velocity

· get_max_velocity()
// get the maximum velocity

· is_moving()

// returns TRUE if the motor is moving

· is_off()


// returns TRUE if the motor drive is OFF

The Controlled Motor module supports single-axis motor control. The position, velocity, and acceleration parameters of the motion velocity profile trajectory are set by set_position(), set_velocity(), and set_acceleration(). Once the motion profile is set, start() starts the motion. The zero position is set by set_home(). The actual current motor position, velocity, and acceleration are obtained by get_position(), get_velocity(), and get_acceleration(). The motor drive can be turned on or off by on() and off(). The motor_moving or motor_off status can be tested by is_moving() and is_off(). The function wait_until_done() provides synchronization or specified timing relations between two motors. For example, it can be used to support two sequential motions where the second motion starts when the first motion is complete by a specified percentage.

Following the general CLARAty design concept, the Motion Control Package uses the bridge design pattern to support different implementations of motor controllers. In this bridge design pattern, different specific implementations are separated from “generic abstraction”. Ctrl_Motor (Controlled_Motor) is a generic Abstraction class, which provides all the generic interface methods (functions) for motion control. Ctrl_Motor_Impl is the “Implementation” class, which provides methods specific to each different motor controller implementation. The Ctrl_Motor class contains the pointer to Ctrl_Motor_Impl. Specific implementation examples of Ctrl_Motor_Impl objects are R7_Motors (which use LM629 motor controller chips) and R8_motors (which use HCTL 1100 motor controller chips on an in-house built widget board), which are described in Section 3.  Motor control can also be implemented in software as is the case for the FIDO rover motor, which provides additional classes for generating PID control laws (PID = proportional, directive and integral control).

2.1. Trajectory and Trajectory Generators

The trajectory and trajectory generator constructs are software modules that are responsible for generating trapezoidal and other profile functions. They can also modify a trajectory that is being executed by combining a number of overlapped trapezoidal or other profile trajectories in real-time. The trajectory generators send the profile at every system heart beat to the attached motor. The trajectory generator can specify the periodicity and priority of this operation.

2.2. Coordinated Motors

The coordinated motor classes use a number of controlled motors to provide a coordination motion system. These systems are used for controlling a robotic manipulator arm or controlling a locomotion system such as a mobile vehicle or a rover. The type of coordination that this class does is dependent on the kinematic models of the system. Taking into account the system model, a goal for the motion is input into the coordination motion system and a set of trajectory profiles is output to the controlled motors. Some coordinated motor classes will also continuously received feedback from the mechanism to be controlled in order to keep all motors in lock step as some motors experience higher loads compared to others.

Commercial Equivalents and Freeware

All robotic manufacturers have an implementation for motion control and coordination. In order to operate any robotic system, the motors in the system (which are either DC brushed or brushless, or AC) must be controlled and coordinated using trajectory inputs and motors’ feedback. Such companies include Irobot and their RWI division, Probotics, and all industrial robotic companies such as Kuka, Bosch, Adept Technology, Asea Brown Bovari, Yamaha, Seiko Systems, etc. Commercial examples are not limited to robotic companies but also include all motion control companies such as Galil Motion (http://www.galilmc.com/products/) and Animatics Corporation (http://www.animatics.com/). 

3. Hardware Drivers Package

The device drivers package contains implementations of all device drivers used by the supported robotics and rover systems. Device drivers fall into several categories, which include motor controllers, framegrabbers, input/output modules (analog and digital), instrument and sensor device drivers, etc.

3.1. Motion Controllers

The motion controller module supports several hardware implementations of functionality needed for controlled motions. These include a number of drivers to control some of the most widely used motor control chips such as LM628/629 and HCTL1100 motor controller chips. These chips can be accessible directly, mounted on custom boards, or used in conjunction with other supporting chips. Capabilities of various motion control chips can vary. Software implementations are used to compensate for functionality not available in hardware. The software-based support includes the generation of trapezoidal or other velocity profiles by software as opposed to by a hardware motor controller chip.  

Two examples of hardware motion controller chips supported by CLARAty are LM629 for Rocky7 rover platform and HCTL 1100 for Rocky8. The National Semiconductor LM629 motion controller chip provide closed loop PID servo control for single axis actuators. Chip functionality includes quadrature encoder reading and trapezoidal velocity profile generation with the velocity sampling time up to 256 (s (4 KHz) and a quadrature encoder-state capture rate of 1 MHz. The CLARAty LM629 chip driver software provides an interface to send motion control commands to the chip and receives the data and status reply from the chip. The unique implementation of this driver allows it to operate on the chip whether it is directly connected or placed in a commercial-off-the-shelf (COTS) board or in a custom board. The functions supported include set_home(), set_position(), set_velocity(), set_acceleration(), reset_trajectory(), load_trajectory(), execute_trajectory(), read_real_position(), read_real_velocity(), is_moving(), is_off(), and is_position_error_exceeded().

The CLARAty Controlled_Motor (Motion Control package) software uses LM629 chip software to communicate with the LM629 motion controller chip through the CLARAty digital_IO mechanism (see Input/Output package), where LM629 chips drive DC brush motors through H-bridge chips. Refer to the Manipulator Package for more detailed usage including a functional diagram.

Agilent Technologies (formerly part of Hewlett Packard) provides another type of motion control chip known as the HCTL-1100. This chip is similar to LM629 chip. The functions supported by the HCTL-1100 software module are similar in capability to those by LM629 listed above.

3.2. Framegrabbers and cameras (vision)

Framegrabbers are computer boards that take video RS170 signals and digitize them for image processing. Several rovers use these framegrabbers to convert the analog video signal into a digital array of pixel values for further processing. This module provides software drivers that will control the functionality of the framegrabber and its interactions with the main processor and a physical camera. 

Another alternative to framegrabbers is the use of digital cameras that directly interface with the main processor using a high-speed serial link. Two types of serial buses are most common: the IEEE 1394 (Firewire) interface or the USB (universal serial bus) interface for image transfer and camera interfacing. 

Drivers have been developed to interface with and operate both Firewire and analog cameras using framegrabbers. For example, the Imagenation PX610 is a video framegrabber for PCI bus. It captures monochrome composite video (RS-170 NTSC) in 640x480 pixel resolution with 8 bits (256 gray levels) per pixel. Two framegrabber boards are simultaneously used for synchronized stereo-pair image capture. The PX610 framegrabber driver software is for PCI-bus running under the VxWorks operating system.

3.3. I/O boards and chips

CLARAty software supports several digital and analog I/O boards and chips. For example, the Sensoray S720 is a digital input/output board for Compact-PCI bus. It allows masked input, output, and bi-directional bus operations. The S720_Board class contains 10 DIO ports, which are specialized subclasses of a general CLARAty digital I/O interface implementation known as the DIO_Impl class. The S720 board allows setting up initial configurations. The port class for the S720 board defines three operations: input, output, and I/O direction setting.

Another example of a digital I/O board driver that is implemented in CLARAty is the old VPAR10  board from OR Industries (obsolete VME board). It is also a digital input/output board that runs on a VME bus. Its functionality is very similar to the S720 board. The VPAR10 board supports initial setup configuration, and its ports define input, output, and direction setting for tri-stated I/O control

Other I/O drivers are in the form of software that controls various chips directly. These include the drivers for several Maxim Chips such as: the MAX186 and the MAX529 analog I/O chips. The MAX186 chip is a 12-bit, 8-channel single-ended/4-channel differential analog-to-digital converter that reads analog voltages and converts them into digital numbers. The MAX186 class driver supports such functions for setting the chip mode of operation of the chip (e.g., unipolar, bipolar, single-ended, differential) and reading analog voltages. The MAX528 chip is an 8-bit, 8-channel, digital-to-analog converter, generating analog voltage outputs. The MAX528 class driver supports such functions such as mode setting for the chip and outputting of analog voltages. In the current implementations, the MAX chips are used in a custom motion and I/O control board known as the widget board.

3.4. Custom boards

In additional to many COTS boards used in robotic systems, one often finds a large number of custom boards using a number of COTS chips.  For example, JPL has developed a single axis motion control board that has a PIC microcontroller, a number of digital I/O lines, analog-to-digital converters and digital-to-analog converters. The board, which is currently used by the Rocky 8 rover and several other robots at JPL, is known as the “widget board.” It is a small-size custom card that controls the motion of a single DC brushed or brushless motor. The board communicates with the main CPU board (e.g., Pentium-III, PowerPC750, or M68060) through an I2C bus. It contains a Microchip PIC16C65A microcontroller as well as an HCTL1100 motor controller chip (from Agilent Technologies), a MAX186 A/D converter, and a MAX528 D/A converter. CLARAty implements driver modules for chips of the widget board, as well as drivers for groups of chips. The widget board classes provide a modular set of implementation to allow applications to use parts or all of the functionality of this board. The widget board software classes include a Widget_Motor (subclass of HCTL1100_chip class), a Widget_AI class (subclass of MAX186 chip class), a Widget_AO (subclass of MAX528_chip class), a Widget_DIO, and an I2C class. In addition to the driver software for this chip, a set of modules run on the PIC microcontroller translates the request from the application into commands to the various chips. The firmware modules, which include an I2C slave communicator, an I/O module, and a motor control module are part of the CLARAty repository.

Other drivers for custom boards in CLARAty include the driver for LM629 Board, which is a custom board for several of the National Semiconductor chips that are directly connected to a host computer via a parallel bus. The functionality of this board is the control of a number of brushed DC servo motors. These controlled motors are commanded to follow a given trajectory profile.
3.5. Other

Other hardware drivers include I2C master controller, PCI controller, and VME to ISA converters.

Commercial Equivalents and Freeware

Many commercial boards and chips come with software drivers, technical specifications, or manuals on how to program these hardware components. Some companies do not release the source code for proprietary reasons. In many cases, even though source code is available, drivers are not available for the operating systems that are used by these robots. CLARAty ports and provides many drivers for several operating systems, but  primarily focuses on both the VxWorks and Linux operating systems. In some cases, there are commercial equivalents with the same functionality that can run under Windows operating systems.

There is often ample freeware that provides drivers and firmware for boards for developers.  Drivers, alone, do not provide much functionality beyond controlling a particular piece of hardware. 

4. Sensor Package

The sensor package contains modules that define the interface and describe the behavior of various sensors and instruments used in robotic systems. Such sensors include IMUs (inertial measurement units), sun sensors, bump sensors, tilt sensors, compasses, and potentiometers. 

4.1. ( - 4.2) IMUs and Specific IMUs

For example, CLARAty provides generic classes for the IMU sensor. This generic class provides an interface and a description of the behavior of the inertial measurement unit. This unit provides measurements about the system onto which it is attached. These measurements include roll angle, pitch angle, roll rate, pitch rate, yaw rate, and accelerations in the x, y, and z directions. The generic implementation of the driver software defines these types of measurements and the modes for the collection of the data. A specialized version of the software provides the implementation that is necessary to talk to a particular IMU hardware. The generic IMU software can be specialized to a number of different IMU units.  Specialization of the IMU implementation classes includes an adaptation that uses a COTS IMU from Crossbow (DMU-HDX).  In this and other IMU units, yaw angle can only be deduced from yaw rate. This is done by integration of yaw rate for the duration of the motion.

4.2. Orientation Sensors

The orientation sensor software supports generic electronic tilt sensors and magnetic compasses. The magnetic compass is commonly used on Earth to determine the vehicle heading, but not that useful on Mars due to a negligible magnetic field. A sun sensor can be used to determine the vehicle heading. The sensor uses wide field-of-view lens, facing upward towards the sky. The centroid of the sun in the sensor is measured by either using a 2-D analog position-sensing device (PSD) or a CCD. For the PSD reading, an analog input device is used to analog voltages. For CCD, a simple image processing function to detect the centroid is performed.  The sun sensor software determines the vehicle heading from the time of the day and the sun azimuth and elevation angles relative to the vehicle. It uses an Ephemeris library that has knowledge about the position of the sun, earth and other planets. From these positions, a calculation is performed to recover the absolute heading of a robot on the ground.

4.3. ( - 4.6) Rate Sensors, Temperature Sensors, and Voltage and Current Sensors

Other sensor reading software supports temperature sensors, rocker-bogey angle measurements using potentiometers, wheel motor currents, arm motor currents, gyroscopes, and accelerometers.

4.4. Power System Manager

Contains physical classes for a power system, and power related devices such as power sources, batteries, and battery chargers based on 'device' and 'telemetry', as previously described.  Specializations available for both simple simulated power devices and hardware on the rovers.

Commercial Equivalents and Freeware

Commercial sensors normally come with software drivers, technical specifications, or manuals on how to program (e.g., Crossbow IMU manual). In addition to drivers commercially available for all these COTS sensors, CLARAty adds the definition of the generic classes to allow the interchangeable use of sensors from various vendors.

5. Input/Output Package

The input/output package provides a generic software implementation for controlling I/O in a robot. The I/O includes both digital and analog I/O. The functionalities supported by this package include digital I/O ports, analog I/O channels, composite digital I/O, and hardware interfacing with I/O cards from various vendors. 

5.1. DIO

A set of software classes is implemented within the I/O package. The DIO class is a generic abstraction for digital input and output, which hides specific implementations from the user. The DIO_Impl class is the specific implementation class. It provides a parent class for all specialized I/O port operations. For instance, one 4-bit of generic DIO and another 4-bit of generic DIO can be put together in one 8-bit DIO_Impl, where the lower 4 bits are for one 4-bit DIO and the upper 4 bits are for the other 4-bit DIO. When the user reads from and writes to the two generic DIO’s using DIO-supported functions, they are automatically reflected to the DIO_Impl objects. Therefore, once the relations between DIO objects and DIO_Impl objects are defined according to the hardware wiring, the user needs to work on only DIO’s. Functions supported for DIO include set(), set_bit(), clr(), clr_bit(), toggle(), toggle_bit(), as well as input() and output(). The DIO_Impl class supports input(), output(), set_IO_direction(), and invert_IO(). The DIO and DIO_Impl classes allow the user to set some signals to inverted logic or active low. For instance, if the signal is set to inverted logic (active low), set(ENABLE_BIT) actually sets the ENABLE_BIT to zero. Specific digital I/O implementations are defined as concrete subclasses of DIO_Impl as described above in Section 3 on Hardware Drivers for I/O boards and chips.

In some specific applications, it is noted that there is a need for the composite digital I/O class known as CDIO, which enables the user to define a combination of DIO’s. For instance, a CDIO object may comprise of three DIO’s, each linked to a different DIO_Impl hardware port. When the user manipulates the CDIO object (input & output), the manipulations are automatically reflected to specific DIO_Impl hardware ports. 

In summary, the functionality of the Digital I/O classes is the manipulation of bit patterns that allow combining, separating, masking, inputting and outputting of these patterns. It also provides mechanisms to allow these classes to be multithreaded, which means that multiple clients or applications can call these functions at any time.

5.2. AIO

The analog I/O classes are similar to the digital I/O classes except that they deal with analog input and output rather than digital. The AI class reads analog voltages in digital numbers from analog-to-digital converters, while the AO class writes digital numbers to digital-to-analog converters to generate desired analog voltages. Examples of functions supported include input(), output(), set_gain(), set_offset(), and set_mode(). 

Commercial Equivalents and Freeware

A commercial equivalent to CLARAty’s I/O capability is a product from National Instruments called LabView. LabView has many more capabilities for I/O control than the CLARAty I/O package, however, it does not operate in an embedded environment and hence cannot be used with the CLARAty software. LabView supports generic DIO, AI, and AO device virtual interfaces (VI) for data acquisition design applications. Device-specifics are defined in separate configuration VIs, supporting hundreds of commercial chips for LabView-based data acquisition designs.

6. Communication Package

CLARAty currently supports two forms of communication between hosts: a Decision Layer/Functional Layer interface, and a Functional Layer/Simulation interface. The interface between the Decision Layer host and the Functional Layer host is implemented by the Connector class, a socket-based asymmetric (client-server) middleware that distributes messages to objects in the form of method calls on those objects. The interface between the rover simulation host and the Functional Layer host is implemented using a content-insensitive messaging system that can be incorporated in any class. The simulation interface is tailored for smaller, more frequent low-level messages, whereas the decision-level interface is designed for less frequent strategy-style commands.

The Connector class, used for host-to-host communication between the two major layers of CLARAty, is designed as client-server middleware on top of the Socket class.  The Socket class is a symmetrical message transport layer wrapping the socket services of the underlying operating system. It can provide either TCP (connection-based) or UDP (packet-based) service.

The Connector class adds message-level queuing and message-type-based delegation of commands, as well as subscription service to the transport layer. A fixed set of message types is supported, and a registry of bindings between message type and consumer object method is maintained. A message queue is maintained for both input and output from the Functional Layer host, isolating the stream-based (TCP) transport layer from the message processing. Each command received also spawns a new thread that waits for command completion, enabling consuming classes to be designed using a preemptive scheduling model, consequently allowing the use of blocking or greedy objects if desired. The Connector class itself is run as a server on the Functional Layer host. The client (Decision Layer) runs client code – either the connector_client standalone test utility, or application software using the DL_Listener class. The Connector class is also responsible for instantiating the Rover object, which in turn instantiates its components.

6.1. Socket 

The Socket class provides a message-based wrapper to low-level OS services. The wrapper class provides a platform-neutral symmetrical transport layer that can provide either a TCP connection or a UDP reliable or unreliable packet delivery service. The Socket class provides remote two-way messaging to any class that requires it, allowing direct content-insensitive communication between any object in CLARAty and any host also implementing the Socket class. This lightweight messaging system is suitable for the frequent low-level messaging occurring in hardware simulation.

The rover simulation interface package (see Section 16) provides a good example of the use of the Communication Package. The user of the Communication Package is an object of class SimMotor that performs ControlledMotor actions. SimMotor is a type of ControlledMotor. Internally, the SimMotor object, upon receiving a method call commanding a motor motion, translates the call to an ASCII message that is sent to the rover simulator host machine (acknowledgement of receipt required), which then parses it and acts accordingly. Unsolicited motor status messages are received from the rover simulation by the SimMotor object in the Functional Layer.

6.2. ( - 6.3) I2C and Serial Driver 

Other modules that are included in the communication package are serial driver classes, which provide an interface to several serial implementations such as I2C and RS232. The input and output of these classes are character streams. There are also control settings for each class.

Commercial Equivalents and Freeware

There are several implementation of middleware that have similar capabilities. These include the implementation of TAO (ORB) (http://www.cs.wustl.edu/~schmidt/TAO.html), CORBA (http://www.corba.org/), and other COTS and freeware packages. While similar in functionality, the CLARAty implementation is designed to allow the code to take advantage of optimizations that are not possible with general purpose ORB architectures.  Therefore, the CLARAty middleware is domain specific.

7. Manipulation Package

The manipulator package supports functions for serial-link manipulator control and there are plans for it to support parallel link manipulators. A manipulator is a robotic arm that has a number of joints and a number of links. These manipulators can have redundant joints that allow for very dexterous robotic manipulation or a limited number of joints that allow for limited manipulation. Support for manipulators include moving the arms in various modes (joint and Cartesian). In joint mode, the arm can be moved by commanding the joints individually or as a group or joints. In Cartesian mode, the arm is commanded by providing the desired trajectory for the arm’s end effector in Cartesian space. The software would then use the inverse kinematics of the arm to translate this request into joint commands that are sent to the individual joints. In addition to inverse kinematics, the module also supports the forward kinematics of the arm. For arms that are mounted on mobile robot platforms, additional functionality includes definitions for stow and unstow operations of a manipulator.

7.1. Manipulators

Following a general principle of CLARAty Functional Layer Packages, the CLARAty Manipulator Package (Figure 2) is based on an object-oriented design that can be adapted to various manipulators. In particular, the bridge design pattern [Gamma, et al, 1995] is repeatedly used at different abstraction levels. In this bridge design pattern, different specific implementations are separated from “generic abstraction”. In the top manipulator level, the “generic abstraction” Manipulator class provides all the generic interface methods (functions) for high-level manipulator control, while the “specific Implementation" class provides interfaces specific to each implementation. Similarly, the Controlled_Motor class again uses the bridge design pattern to support different implementations.  Specific instances of concrete Controlled_Motor_Impl objects are R7_Motors (which use LM629 motor controller chips) and R8_motors (which use HCTL 1100 motor controller chips on an in-house built widget board). The repeated use of the bridge design pattern in both Controlled_Motor and Manipulator levels enables the well-organized, easy-to-maintain, universal support of different types of manipulators equipped with different motor controllers.


Figure 2. CLARAty Manipulator Package for Rocky7 Platform

A simplified functional diagram of Figure 2 shows modules specific to the Rocky7 (R7) platform. It is important to note that a concrete Manipulator object (e.g., R7_mast) can access not only Manipulator-level (functions) methods but also any lower-level ones when needed. For instance, R7_mast would normally use Manipulator-level functions. However, if needed (e.g., during testing and anomaly recovery), it can use lower-level functions such as a function to control or test a specific joint motor, since the R7_mast object has access to the corresponding motor object. The R7_mast(stop() function causes all the joint motors of the R7_mast to stop, while joint1(stop() causes only the joint 1 motor to stop. 
The CLARAty coordinated joint motion control function move_joints() employs synchronized motions, where all joints start to move simultaneously. It is highly desirable to start moving all the joints at the same time (or almost at the same time), to achieve consistent manipulator motion trajectories, since different starts with inconsistent or unpredictable delays could be particularly troublesome if fine motion control is required.
If the manipulator end effector needs a straight-line motion, Cartesian motion control is used. There are two methods to achieve straight-line Cartesian motion control. The most common method when there is enough computational power is to compute the forward and inverse kinematics on the fly at every control loop cycle. For instance, at 100 or 200 Hz, this method makes the Cartesian servo to achieve high-quality straight-line motions. An alternate method is needed when there is not enough computational power. In this alternate method the joint motion trajectory sequence of via-points is first pre-computed to fit a straight-line motion within a given error tolerance, and then the manipulator is moved in accordance with the joint motion trajectory sequence.

The manipulator class also supports unstow() and stow() operations which are combinations of coordinated joint motions or Cartesian motions. For synchronization or timely start of the next motions, wait_until_done(percent_done) is used. It waits until the current motion is completed by a specified percentage. Thereafter the next motion starts. Depending upon different timing relations between joint motions, three types of motions are possible: 1) two sequential stopping motions by using percent_done = 100%, 2) two sequential non-stopping continuous motions by using percent_done < 100%, and 3) two synchronized motions by not using wait_until_done().

7.2. Sensor-based Manipulation 

The sensor-based manipulation class is a high-level class to perform advanced manipulation using various sensors such as cameras, switches, motor currents, tactile sensors, end-point force sensors, and proximity sensors.

Commercial Equivalents and Freeware

Commercial examples include software developed to control industrial robotic arms. This includes commercially available transformations, forward and inverse kinematic and control algorithms. Some of the industrial providers of such algorithms are: Adept Technologies, Inc. (http://www.adept.com/main/index.html), Bosch Robotics (http://www.robotics-technology.com/robots/bosch/index.shtml), Seiko Robotics (http://www.seikorobots.com/), Yamaha Robotics (http://www.yamaharobotics.com/), Kuka Robotics (http://www.kukarobotics.com/), and Fanuc Robotics (http://www.fanucrobotics.com/). These companies provide manipulators, controllers, and manipulation  control software for pick-and-place and par assembly operations.

8. Locomotion Package

The locomotor module supports software that is responsible for the surface mobility control of robots. It provides functions for driving robots in two different modes (start and stop mode, and continuous drive mode).  Locomotion system can use wheels, legs, or a hybrid of the two

8.1. Wheeled Locomotion

The types of robots that are supported are limited to wheeled robots with any number of drive and steering wheels. These vehicles can be fully, partially, or skid steered.  The functionality of the software in this module includes the solving of vehicle forward and inverse kinematics, the control of multi-wheel vehicles, and the logging of vehicle operation data.

For example, the Rocky7 rover is partially steerable: all six wheels are drivable, but only two front wheels are steerable. For a partially steerable rover, a desired goal position (x, y) without heading specification can be achieved by a single arc motion, which can be equivalently specified by the arc distance and angle. A desired goal position (x, y) with goal heading (d) needs two arc motions. Since there are an infinite number of sets of two arcs that get the partially steered vehicle to the desired position and heading, an optimal solution is selected by using the cost function L1+L2+|L1-L2|, where L1 and L2 are the lengths of the first and second arcs.

In contrast to Rocky7, the Rocky8 rover is fully steerable: all six wheels are both drivable and steerable. For a fully-steerable rover, a goal position (x, y) without heading specification can be achieved by a straight-line crab motion. On the other hand, when a specific goal heading is also desired, a desired goal position with a goal heading can be achieved by a single arc motion.

Functions for position moves include move(length, heading), move(from_point_A, to_point_B), and move(from_point_A, to_point_B, heading). Each move() function generates a motion sequence defining a sequence of motion segments and then drives the rover according to the generated motion sequence. Currently it either steers or drives wheel motors. It does not steer while driving.

The locomotor class diagram (Figure 3) shows the current design of the locomotor classes and their relationship with other classes in the system. The Ctrl_Motor class is the same one described in the CLARAty Motion Control package. The Wheel Locomotor again uses the bridge pattern: Wheel_Locomotor class for generic abstractions and Wheel_Locomotor_Impl class for specific implementations. The Wheel_Locomotor_Impl class supports functions for specific wheeled rover implementations including mechanism models such as get_wheel_radius(), get_number_of_steer_motors(), get_number_of_drive_motors(), get_axle_position(), and get_wheel_position().


Figure 3. CLARAty Locomotor class diagram
8.2. Legged and Hybrid Locomotors

There are several types of rovers that use legged locomotors. The legs of these locomotors are simple serial link manipulators. Legged locomotion bring together the manipulation and locomotion packages. Currently there are designs and implementations for both wheeled and manipulators but there is no integrated code has been implemented that combines the two. A hybrid locomotor is one that uses both wheels and legs.

Commercial Equivalents and Freeware

There are several manufacturers of mobile robots and providers of software packages that control the mobility of robotic systems. Such companies include, RWI, a division of Irobot that sells the Mobility software to control the different mobile robots sold by Irobot.  Other companies include ActiveMedia, Probotics, and Cyberobotics Corporation. Additionally, there are algorithms available in the open literature on how to control and implement software for mobile robots.

9. Vision Package

The vision package is responsible for the implementation of image-related data structures, image capture from cameras, image operations and processing, machine vision algorithms, image related file operations, and image displaying.  

9.1. Image Related Data Structures

The vision package provides a generic image data structure, which maintains the pixel data of an image, as well as specific image structures such as a color image (an image made up of color pixels), multi-planar image (an image made up of multiple planes of data), and camera image (an image that includes a model of the camera with which it was taken).  Another data structure is the 3D Point Cloud that is a list of 3-D points in a vector form. This data structure is usually an output generated from translated range maps to 3-D maps. These data structures only provide a representation for data and do not include any image processing operations.

9.2. Cameras and Image Acquisition

The vision package also provides a high level interface for image acquisition, as well as several specific implementations of a variety of cameras and image acquisition methods.  The high level interface provides a uniform capability to acquire images and set parameters such as exposure and gain on a camera.  Implementations of specific cameras/acquisition methods include IEEE 1394 (Firewire) cameras (adhering to the 1394-based digital camera specification), specific analog framegrabbers, and USB cameras.  Each implementation adheres to the high level interface but can provide additional capabilities specific to the camera/method being implemented.  The interface and implementations are implemented using the bridge design pattern, allowing for both conceptual and functional extendibility.
9.3. Camera Calibration

The vision package also contains several camera calibration algorithms for generating a camera model. A camera model has both extrinsic parameters indicating where the camera is relative to the world and intrinsic camera parameters, which capture the properties of the camera optics. Camera calibration using CAHVOR [JPL] or Tsai/matrix [OpenCV, SRI] model are available. All implementations are published and/or distributed as a library

9.4. Image Operations and Processing

Image operations, such as convolution, rescaling, subsampling, and rectification, and image processing, such as edge detection and corner detection, are also provided by the vision package.  These operations all implement a high-level image operation interface, which defines the common behavior of all operations (an input image is processed to an output image).  The specific operations all adhere to this common interface and can be used interchangeably.  Additionally, each operation can also have capabilities specific to the operation.

9.5. Image Related File Operations & Display

The vision package also provides a high-level image file saving and loading interface, which is implemented for various standard file formats (including TIFF, PNM, FITS, etc.).  The interface simply declares a common load and save method call and the specific implementations define the behavior of these calls for the respective file format.  Certain implementations may use external library calls (previously written, commercially or publicly available code) while others may implement the load and save methods from scratch.

The vision package provides the ability to display images and visualize related data structures and algorithms on a host desktop machine using a platform independent, commercially or publicly available GUI (graphical user interface) toolkit.  Currently, TrollTech's QT and the open source OpenGL are the toolkits being used for visualization.  

9.6. Machine Vision Interfaces

This module provide generic classes (base classes) for various machine vision algorithms. These classes do not have any technological implementations. They only provide interface and structural designs to support a number of machine vision algorithm implementations (see below)

9.7. ( - 9.9) Machine Vision Algorithms

The machine vision algorithm types available in CLARAty which include multiple implementations are:

· Stereo vision: provides depth information from two or more images. The input to this algorithm is a number of image taken from cameras with known precise location and lens models, and the output is a depth or elevation map that provides the (x,y,z) location of every point in the image. In practice, there are a number of points for which no depth can be generated and the accuracy of the (x,y,z) points depends on the accuracy of the knowledge about the camera calibration parameters (location and lens model). This algorithm is primarily used in obstacle avoidance of mobile robots. 

· Visual tracking: provides the spatial motion of a feature in a sequence of images. The application of this algorithm is for tracking rock feature to allow a mobile robot to reach a designated rock in the terrain. The input to this algorithm is a continuous sequence of either monocular image or stereo image pairs. The ouput is an (x,y) designation in the image of where the selected feature is. This is normal fed into a locomotion algorithm to drive the robot to the designated goal. 

· Visual odometry: provides the spatial motion of a camera from a sequence of images taken by that camera. Similar to the above algorithm, the visual odometry algorithm track selected set of features in consecutive images. In addition to image sequence, it also requires an input for the initial estimate of the motion. The output is a refined estimate of the mobile robot motion.

· Camera calibration: provides the lens and sensor parameters and location of a camera from a set of calibration images taken by the camera.

· Image matching/integration: combines multiple images of a scene and generates a three dimensional reconstruction of the scene.

Generally, there are multiple implementations or techniques for solving each problem, and a common interface is defined for each problem so that the different methods implemented can be used interchangeably.  

Commercial Equivalents and Freeware

There are many commercial packages that implement the capabilities found in the vision package.  These include:

· MathWorks' MATLAB computing environment (provides convolution, edge detection, and other similar mathematical operations)

· Intel's Image Processing Library and OpenCV library (provides image data structures, image processing, image file operations, and machine vision algorithms including stereo and camera calibration)

· Microsoft's VisionSDK (provides image data structures)

· SRI's Small Vision System library (provides stereo, camera calibration, and image file operations)

· University of British Columbia's Vista package (provides image data structures, image processing, image displaying, image file operations, and a few machine vision algorithms including optical flow/tracking and camera calibration)

· Sun's Java programming language (provides image data structures, image processing, and image displaying).

10. Science Package

The science package is responsible for two main functions, 1) to provide an interface wrapper for a spectrometer device, and 2) to analyze rock and soil samples from both spectrum and science image data.

10.1. Spectrometer

The spectrometer class has three distinctive functions: command verification, data acquisition, and calibration.  Command verification involves checking the instrument state and reporting the readiness of the device to carry out a requested function.  The instrument state is tracked in the spectrometer_impl class with a set of feature parameters.  Data acquisition is done through the acquire(), acquireAndRead(), and read() methods.  Acquire() captures a raw spectrum and stores it in the storage buffer, while read() returns that spectrum from the storage buffer to the user.  AcquireAndRead() method captures a spectrum image and returns a raw spectrum without using the storage buffer.  The exposure duration is an input to the acquire method.  The spectrometer_model for the device determines the maximum buffer size.  The raw data from the device may be calibrated upon request by accessing an instrument-specific calibration procedure.  Due to the performance variation during operation, the calibration related performance information would be updated via the spectrometer_model.  An abstract list of methods is provided below:

Main methods of the Spectrometer package are:

· HasFeature  

// returns true if an instrument has the requested feature

· Point


// point spectrometer at a location

· Calibrate

// calibrate the spectrometer's response properties

· GetSpectrum

// returns raw spectrum

· GetCalSpectrum
// returns calibration spectrum

The spectrometer_impl class is a base class that can be used to derive a device-specific operation control object (my_ spectrometer_impl).  The operation control involves instrument conditioning for data acquisition and data retrieve.  Depending on the available features an instrument has, the conditioning process may vary.  Therefore, a set of feature objects are developed with feature-specific control functions so that a custom implementation class can be flexibly derived.  The spectrometer_impl class employs a set of feature objects to describe the operational control properties of a device.  The features may include exposure control, gain level setting, buffer usage, scan platform articulation, and calibration options.  Each feature class provides a list of options and a set of parameters so that the option and the valid value range for each parameter may be set arbitrarily.

The spectrometer_model class is used to store information about a spectrometer with respect to its structure, performance, and operation.  The structure information may include rover interface (how it is attached and articulated) and dynamics related information.  The performance information may include signal quality related aspects such as sensitivity, noise, and resolution. The operation information may include a list of available commands, resource usage, and constraints. 
10.2. Science Image Analysis

The science image analysis consists of five main parts, which are edge detection, horizon detection, finding solids, finding layers, and ellipse summary.  First the horizon detector finds the horizon in the image. Then, the layer detector searches below the horizon for layers. The spectrometer pointer searches below the horizon for a suitable target to point a spectrometer.  Therefore, the spectrometer pointer and the layer detector are independent of each other, but in this application, they depend on the horizon detector.  Finally, there is an elliptic summary than can be given for the output of the layer detector.   In summary, the spectrometer pointer depends on the horizon detector, the layer detector depends on the horizon detector, and the ellipse summary depends on the layer detector.  This algorithm is currently under implementation.

10.3. Science Spectrum Analysis

The science spectrum analysis is used to determine rock mineral composition.  Currently only carbonate can be detected.  The algorithm to detect carbonate is implemented in the Carbonate_identifier class under the module analysis_carbonate.  The Carbonate_identifier class inputs a Cal_Refl_Spectrum to analyze, which is calibrated spectrum data created by the spectrometer class.  The method analyze() is used to analyze this calibrated spectrum and return –1 if the data is noisy, return 0 if the sample does not contain carbonate, return 1 if the sample contains carbonate, or return something else if the result contains wrong information.

10.4. Science Cameras

Science cameras are a specialization of the camera classes that provide additional calibration parameters needed for science analysis. In general science cameras are colored cameras with high fidelity camera optics. In some instances, generic colored cameras can be used instead of specialized science cameras

11. Estimation Package

The estimation package is responsible for providing tools for estimating robot related state. These tools include implementations of various types of estimator filters such as an implementation of a Kalman Filter. One example of estimation currently implemented and used on the Rocky rovers is the estimation of the rover's current position in the global coordinate frame.  The module provides functions for initializing the estimator and for querying the current state estimate.  This position estimator is based on inputs received from an Inertial Measuring Unit (IMU) and wheel odometry.  The IMU provides angular velocity and linear acceleration about three axes.  Currently, the estimator uses only the yaw rate from the sensor. The yaw rate provides information about the rover heading.  By combining both the IMU and the wheel odometry estimator enables improved position estimation over estimations based on just wheel odometry alone. The IMU provide this improvement by compensating for wheel slippage.

11.1. Kalman Filter

This package contains a Kalman Filter module that implements the mathematics of a Kalman Filter in the general sense. These are adapted and used for the rover position and orientation estimation.

The rover position estimation module uses a two-tier Kalman Filter to perform position estimation.  The first tier uses a linear Kalman Filter to estimate the bias in the yaw rate of the IMU.  This enables the system to subtract out noise from the sensor readings.  Because the amount of noise can change over time (e.g. as temperature changes) it is necessary to estimate the yaw rate bias at intervals throughout the course of rover operations.  Currently, the estimator computes the yaw bias estimate whenever the rover is stopped.  As the rover moves, the estimated bias is subtracted from the IMU measurement to produce a corrected measurement. 

The second tier uses an extended Kalman Filter to estimate the change in position of the rover.  This is an estimate of the amount of change in the rover's (x,y) location and heading since the last time the filter was updated.  The Kalman Filter uses a system model for an Ackerman-based vehicle.  

The Kalman Filter uses a single sensor model based on the IMU yaw rate.  The estimated change in heading from the filter is compared with the sensed change in heading from the IMU to produce a residual. The residual, in turn, is used in the computation of the Kalman gain which eventually will determine how much weight to place in the predicted state estimate from the system model and the sensed measurements from the IMU. 

The interface to the estimator includes of the following functions:

setStateVector()

     
// sets initial state

setStateTransitionMatrix()          
// specifies the state transition matrix

setEstimatorSysNoise()
     
// specifies the system noise

setEstimatorObsSys()
// specifies the measurement model

setEstimatorObsNoise()
    
// specifies the measurement noise

updateKalmanFilter()
          
// propagate/update linear kalman filter

updateRoverKalmanFilter()       
// propagate/update extended kalman filter

11.2. Pose Estimator Interface

This module contains an interface that ties together any type of pose estimation with the locomotion modules from which it need information. This module is contains glue components that tie estimation, transformations and locomotion.

Commercial Equivalents and Freeware

There are some commercial packages that implement the capabilities found in the estimation package.  These include:

· MathWorks' MATLAB computing environment (provides a toolkit for various types of probablistic and estimation filters)

· The Kalman Filter toolbox - Kevin Murphy, UC Berkley, 1998 http://www.cs.berkeley.edu/~murphyk/Bayes/kalman.html (free download)

12. Navigation Package

The navigation package is responsible for moving the rover from one point to another while avoiding obstacles.  The navigation module performs traversability analysis of the terrain, based on sensor input, and selects actions that satisfy local and global navigation constraints.  The navigation module makes use of the wheel locomotor, stereo, path planning, and matrix packages, among others.

12.1. Local Navigator 

The basic operation of the navigation package is to move the rover from one waypoint to another.  The navigator object repeatedly invokes the action selector to find the best motion for the robot to execute.  It then commands the locomotor to perform this motion. Upon completion it again finds the best action, until it achieves the current waypoint.  The navigator also repeatedly invokes the traversability analyzer, which gets new sensor data from the stereo vision object and then creates a map data structure that indicates how difficult it is to traverse different patches of the terrain.  Other objects (such as the local and global cost functions) can register interest in receiving the results of the traversability analysis, in order to update their own internal maps.

12.2. Local Path Planner

The basic operation of the action selector is to choose the best motion for the rover, based on local and global path constraints.  Local path constraints include avoiding obstacles; global path constraints include minimizing distance traveled to the waypoint.  There are several ways to incorporate both local and global information, including voting and path integration.  Both methods have been used in the past, and both are supported within the navigator framework. In the path-integration action selector (the first implementation of the action-selector class), the action selector determines how the rover will travel along a discrete number of arcs.  The wheel locomotor model is used to predict how the rover moves, given kinematic and dynamic constraints.  At each point along the path, the local cost function is invoked to determine how costly it is to travel that part of the path (based on the results of the traversability analysis) and the global cost function is invoked to determine how costly it is to travel from that point to the desired waypoint.  Roughly speaking, these two costs are added together, and the arc with the lowest overall cost is chosen as the next heading for the rover.

12.3. Navigation Implementations

The navigator package is general enough to handle several different algorithms that have appeared in the literature.  The initial implementation of this package is based on work at Carnegie Mellon [Urmson et.al, 2002], and features an action selector based on path

integration and a global cost function based on the D* path planning algorithm [Stentz, 1995].  Another candidate for the action selector is the GESTALT algorithm, being developed for MER [Goldberg et.al., 2002]. The GESTALT algorithm uses a simple distance-to-goal metric for the global cost function and uses a voting scheme to combine local and global constraints (each source gives a weighted vote, or a veto, to the different arcs, and the non-vetoed arc with the highest total vote wins). Other candidates include the Sojourner algorithm and a navigation scheme based on fuzzy logic [Seraji and Howard, 2002].

GESTALT Navigator

Figure 4 shows a simplified functional block diagram of the GESTALT Navigator as an instance of the CLARAty Navigator. It uses the Stereo Vision module (see Section 10 on the Vision Package) and Locomotor module (see Section 9 on the Locomotion Package) as well as various navigation components.


Figure 4. GESTALT Navigator as an instance of the CLARAty Navigation Package

The GESTALT (Grid-based Estimation of Surface Traversability Applied to Local Terrian) is one of the primary technology implementations of a navigation software module in CLARAty. At its core, GESTALT decides the next best direction for a rover to move, given a desired waypoint goal with the current state of the world model and new sensor data. The desired waypoint goal is typically given as (x, y) or (x, y, z) in a known world frame. The overhead view of the world to traverse on is represented by a grid of rectangular cells. Cells are classified as based on their index of traversability, which is based on slope and roughness of the terrain at that particular cell.  A cell with a high index is untraversable and is marked as an obstacle. A typical example is a 10 m ( 10 m grid with 20 cm ( 20 cm cells, consisting of 50(50 grid-cells. Using sensor data, GESTALT selects the best arc-path for each incremental step of a typically 35 cm distance. 

At each step, the rover heading and distance that corresponds to the selected best arc-path is sent to the lower-level wheel locomotor controller to move the rover. At the end of the each step, GESTALT assumes that a pose estimator provides a reasonably accurate estimate of the rover’s new position. The pose estimator typically uses wheel odometry, an inertial measurement unit, and a sun sensor. A well-known problem of the pose estimator is that it accumulates errors as the rover traverses long distances. A visual odometer that uses 2-D and 3-D feature tracking could be very helpful to reduce pose estimation errors.

The GESTALT computational procedure during a single navigation step is as follows:

1. Invoke GESTALT with a current rover pose estimate and new range data.

2. Compute first and second moment statistics (x, (y, (z, (xy,  (xz, (yz, (x2, (y2,  (z2 about all range points consisting of a set of (x y z) in a given cell.

3. Find the transverability of each cell by merging the moment statistics and finding the best-fit plane. Using the plane parameters, compute three hazard measures: step hazard, roughness hazard and border hazard.

4. Compute the traversability vote value of each arc path as a weight sum biased to consider nearby cells more strongly.

5. Compute the path (or waypoint) vote value of each arc path as a goodness value according to how well it is aligned towards its goal point. 

6. Select the best arc path by merging the above two sets of votes.

7. Send the best arc path to the Locomotor module.

Commercial Equivalents and Freeware

The Mobility software from iRobot offers similar functionality for indoor navigation only. The Saphira software also provides a navigation software that is based on fuzzy logic to allow a mobile robot to perceive it local environment, generate motion commands to drive the rover through that environemtn. Another company that provide small mobile platforms with navigation capabilities is ActivMedia. They manufacture small Pioneer robots that use sonar based sensing to do indoor navigation.

13. Path Planning Package

The path planning package is responsible for determining routes that the  rover can take through terrain that minimize some objective cost metric. The path planning package is used by both the navigator package, which is described in the previous section, and the Decision Layer.  Some implementations of the path planning package make use of the traversability analysis functionality of the navigator package. The path planning packages contains both the generic interfaces for path planners and various implementations.

13.1. Global Path Planners

The global path planner module contains a generic interface to various types of path planner implementations. The basic operation of the path planning is to produce routes to a desired waypoint that adhere to constraints (such as avoiding obstacles, or staying in the sunlight) while minimizing a cost metric (such as travel time, distance, or power usage).  The path planning module is able to return the answer to queries about the cost of the best route from a given point to the waypoint.  

13.2. Global Path Planners Implementations

While various path planners use different algorithms for determining the answer to this, they mostly work in similar ways -- searching through space (and perhaps time) to find a path that minimizes the cost metric.  Some path planners use a discrete grid to find the best path [Stentz 1995], while others plan in a continuous space [Laubach and Burdick, 1999].  In addition, some use a continuous cost metric [Stentz 1995, Tompkins et.al, 2002], while others use a binary (occupied or not) metric [Laubach and Burdick, 1999].  The initial implementations of the path planning module uses the D* algorithm developed at Carnegie Mellon University [Stentz 1995], which uses a discrete grid and continuous cost metric.

14. Behavior Package

The Behavior package  provides a general mechanism for data fusion from different sensors. It evaluates the input values using objectives, weights, priorities, and other metrics, and then calculates the output. Within this package are plans for several modules including ones for neural network control, fuzzy logic control, and behavior-based control.

14.1. Behaviors

We have laid out some designs for a few classes in the behavior-based control domain. 
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Figure 5:  Some Behavior classes and their relationships

In behavior-based control, a robot is controlled using behaviors rather than goals or commands. Such control can be implemented using the different granularity levels of the Functional Layer. Depending on the level of interest, one can implement this control at the motion control level, at the sub-system level (such as the mobility or manipulation level), or at the rover level (for multi-rover coordination). Behavior-based control uses a set of robot behaviors that run in parallel but are coordinated using a coordinating function. There are two types of coordination functions to resolve conflicting behaviors: (1) cooperative coordination and (2) competitive coordination. 

Figure 5 shows the Behavior class which  provides the core data-structure for behavior types. It attaches to any member function of generic physical components or generic functional components. A behavior can be started and stopped at any time. 

14.2. Composite Behaviors

A behavior can also encompass other behaviors. This is accomplished through the Composite_Behavior class. It is derived from the Behavior class but it also aggregates that class. By making the Composite_Behavior a child of Behavior, Composite_Behavior objects will be of the same type as Behavior objects and can hence be used interchangeably. The CompositeBehavior class has a BehaviorCoordination object to resolve behavior conflicts.  BehaviorCoordination objects resolve conflicts between any behavior types. These constructs can be attached to any operation within the Functional Layer.

The Behavior_IO class represents a generic behavior input or behavior output link/attachment. It enables output from one behavior to be attached to the input of another to enable construction of arbitrary behavior networks.  

Commercial Equivalents and Freeware

There are some COTS packages that implement domain specific infrastructure. Some use an object-oriented framework such as Mobility software from Irobot while others use a procedural framework, such as Saphira.  The Saphira package provides an extensive framework for fuzzy-based control of mobile systems. It is desirable to integrate functionality of different domain packages into a single framework to simplify comparative studies of different control and operation approaches.

15. Simulation Interface Package

CLARAty can be interfaced with high-fidelity dynamic graphic-base rover simulators  

This package provides a specialization of the various CLARAty components so they can be easily interfaced with such simulators. The simulator itself is not part of this package. 
15.1. Simulator Connectors

CLARAty taps into the simulation at any one of three levels of abstraction: functional (the entire Functional Layer), mobility (simulated rover-level motion control – e.g. “go_to <rover-relative location>”), and motor (simulated hardware). The simulation typically runs on a separate host that contains OpenGL graphics hardware. The CLARAty Simulation Package is comprised of plug-compatible classes that simulate the functionality at various levels of abstraction in the Functional Layer. These objects use the Communication Package software (described in Section 7) to communicate with a rover simulator via IP sockets. This message-based middleware provides an infrastructure that enables any simulation object in the Functional Layer to communicate with a rover simulator. Additional details of the communication software can be found in the Communication Package description.

15.2. Simulation Implementation
CLARAty simulation modules are plug-compatible with actualized modules. The SimMotor module implements the ControlledMotor interface, which is described in detail in Section 2.1. The simulation is actually computed by the rover simulator software on a different host. The CLARAty simulation module provides a front-end model of the motor state on the CLARAty host. Motor state includes position, velocity, and acceleration values (both commanded and actual), and power and error state. Methods that initiate a motor movement cause a message to be built as a string, which is then sent to the rover simulator host using the middleware described above. The communication protocol and message syntax are described next.
Communication protocol:

· All messages are unsolicited and unscheduled (asynchronous)

· All messages are ASCII formatted and terminated with a semicolon

· Motor command messages from CLARAty FL to the rover simulator are acknowledged by the rover simulator

· Motor status messages from rover simulator to CLARAty FL are NOT acknowledged

· Status messages from rover simulator will be sent only when state is changing

· Rover Simulator-side send and receive functions will be provided

· Rover Simulator-side test/demo program will be provided

· All values are in radians & secs (radians/sec, radians/sec**2)

· All values are absolute

Message Syntax and Command Dictionary: 

· Commands from CLARAty FL:

MPWR[MotorName]["0"|"1"];            // Motor power on (=1) or off (=0)

MMOV[MotorName]["V"|"P"][Val];  // Move motor at V rad/sec or to P rads

MMOV[MotorName]T[TrajAccVal],[TrajMaxVelVal],[TrajEndPosVal];

                                                             // Move motor according to traj spec

MSTP[MotorName];                           // Stop a motor 

MSTP;                                                 // Immediate stop all

· Status from ROAMS:

MSTA[MotorName][AccVal],[VelVal],[PosVal];

MACK[MotorCommandMessageCopy];

Definitions:

[Val]                                Absolute velocity or position values

[MotorName]                   4 characters set in sim_motor object 

[TrajAccVal]                   Trapezoid trajectory params

[TrajMaxVelVal]

[TrajEndPosVal]

[AccVal],[VelVal],[PosVal]:   Motor motion snapshot

Commercial Equivalents and Freeware

Since this is a specialized adaptation to a specific simulation, there are no commercial equivalents to this particular example. However, there are several commercially available robot simulators which include packages from Delmia  Robotics (http://www.delmia.com/), Adept Technology, Adept Technologies, Inc. (http://www.adept.com/main/index.html), Irobot Corporation (http://www.irobot.com/home/default.asp), and Saphira from (K-team) (http://www.k-team.com/software/saphira.html)

16. Adaptations to Rovers 

The hardware rover platforms supported by CLARAty are Rocky8, Rocky7, FIDO, and K9. Each rover platform has different hardware components. The CLARAty architecture facilitates easy adaptations to support a variety of different hardware. The specific implementation classes associated with these specific hardware components are first created. These specific implementation classes are usually concrete subclasses of certain Impl classes. Their related generic classes and programs do not need to change. Therefore, in CLARAty, adaptations are relatively simple: add hardware-specific concrete subclasses and leave the common or generic portions of the software unchanged.

16.1. The Rocky 8 Rover

The Rocky 8 rover is 6-wheel drive 6-wheel steering vehicle with a rocker-bogie suspension mechanism. It is an all-wheel drive and all-wheel steering vehicle. It is equipped with a 4DOF mast and 4DOF instrument arm. The computational module of Rocky 8 is a cPCI backplane with 233 MHz processor and 64 MB of RAM. It has a distributed motion control and I/O control system based on the reusable “widget board.” (a single axis motion control board with digital and analog I/O). It has a distributed FireWire-based vision system.  

The Rocky8 specialized physical components include 1) Rocky8 motors, 2) Rocky8 cameras, 3) Rocky8 IMUs, 4) Rocky8 Hardware Map, 5) Rocky8 Digital I/O, and 6) Rocky8 Analog I/O. The Rocky8 specialized software functional components include 1) R8_Locomotor, 2) R8_Constrained_Locomotor, 3) R8_Navigator, 4) R8_Mast, 5) R8_Arm, and 6) R8_Rover.

16.2. The Rocky 7 Rover

The Rocky 7 rover is approximately the same size and mass as the Mars Pathfinder rover, Sojourner. It is a partially steerable vehicle with 6-wheel drive and 2-wheel steering capabilities. It has a rocker-bogie suspension mechanism. It is equipped with 3 framegrabber-based stereo-pair imagers, a 3DOF (degree-of-freedom) mast and a 2DOF instrument arm with 2DOF scoops.  It has a cPCI PPC750 based computational module, I/O cards, framegrabbers, and a custom motion control architecture based on the LM629 chip. 

The Rocky7 specialized physical components include 1) Rocky7 motors, 2) Rocky7 cameras, 3) Rocky7 accelerometers, 4) Rocky7 gyroscopes, 5) Rocky7 Hardware Map, 6) Rocky7 Digital I/O, and 7) Rocky7 Analog I/O. The Rocky7 specialized software functional components include 1) R7_Locomotor, 2) R7_Constrained_Locomotor, 3) R7_Navigator, 4) R7_Mast, 5) R7_Arm, and 6) R7_Rover.

16.3. The FIDO Rover

The JPL FIDO rover, is very similar to the Rocky 8 from a mobility and manipulation standpoint. It has a PC104-based computational module with a custom memory-mapped centralized motion control architecture and a framegrabber-based vision architecture. It also has a number of science instruments including an infra-red moessbauer spectrometer.

The FIDO specialized physical components include 1) FIDO motors, 2) FIDO cameras, 3) FIDO accelerometers, 4) FIDO gyroscopes, 5) FIDO Hardware Map, 6) FIDO Digital I/O, and 7) FIDO Analog I/O. The FIDO specialized software functional components include 1) FIDO_Locomotor, 2) FIDO_Constrained_Locomotor, 3) FIDO_Navigator, 4) FIO_Mast, 5) FIDO_Arm, and 6) FIDO_Rover.

16.4. The K9 Rover

The K9 rover is similar to Rocky 8 from a mobility standpoint. Unlike Rocky 8, the K9 rover  has a fixed mast. It runs a distributed motion control architecture based on the PICServo motion controllers. It runs the Linux operating system.  The K9 rovers uses a FireWire based vision system.

K9 is the NASA Ames rover platform. The K9 specialized physical components include 1) K9 motors, 2) K9 cameras, 3) K9 accelerometers, 4) K9 gyroscopes, 5) K9 Hardware Map, 6) K9 Digital I/O, and 7) K9 Analog I/O. The K9 specialized software functional components include 1) K9_Locomotor, 2) K9_Constrained_Locomotor, 3) K9_Navigator, 4) K9_Mast, 5) K9_Arm, and 6) K9_Rover.

.

17. Decision Layer Package

The Decision Layer package is responsible for providing autonomous command-sequencing capabilities to coordinate rover activities. The capabilities include creating a command sequence (i.e., plan of rover actions) based on an input set of high-level science and engineering goals, executing that sequence, monitoring the sequence execution, and modifying the sequence dynamically when necessary. In order to provide these capabilities, the Decision Layer uses technology from the areas of Artificial Intelligence planning, scheduling and execution. 

17.1. Continuous Planner Implementations 

The current instantiation of the Decision Layer uses several independently developed software systems to provide planning and scheduling capabilities.  

ASPEN (Automated Scheduling and Planning Engine) [Chien, et al., 2000] is an automated planning and scheduling system, which generates activity plans based on a set of high-level goals.  It is an object-oriented system that provides a reusable set of software components that implement the elements commonly found in complex planning and scheduling systems.  These include:

· An expressive constraint modeling language to allow the user to define the application domain

· A constraint management system for representing and maintaining spacecraft operability and resource constraints, as well as activity requirements

· A set of search strategies for plan generation and repair

· A language for representing plan preferences and optimizing over these preferences

· A temporal reasoning system for expressing and maintaining temporal constraints

· A graphical interface for visualizing plans/schedules

ASPEN was developed at JPL and is written in C++ and Java.

CASPER
 (Continuous Activity Scheduling, Planning, Execution and Re-planning) [Chien, et al., 1999] is an extension of the ASPEN system that supports continuous modification and updating of a plan.  Rather than consider planning a batch process in which a planner is presented with goals and an initial state, CASPER has a current goal set, a plan of activities, a current state of the world, and a model of the expected future state. At any time an incremental update to the goals, current state, or planning horizon may update the current state of the plan and thereby invoke the planner process. The planner is then responsible for maintaining a consistent, satisficing plan with the most current information.  As unexpected events or state updates occur, the planner stands ready to continually modify the plan to bring it back to a consistent and preferred state. CASPER was developed at JPL and is written in C++.

In applying ASPEN and CASPER, we adopted the general framework and system code, but adapted each system to provide the necessary Decision Layer functionality.  This adaptation included the development of domain model definitions, algorithms and code to provide the necessary planning and scheduling capabilities for CLARAty. 

17.2. General Planner Infrastructure

The Decision Layer is also intended to contain basic planning infrastructure that can be used to support different types of planning algorithms and implementations. This infrastructure will likely contain interfaces and support for planning search algorithms, structures for representing plan information (such as goal lists or preference information), plan visualization tools, etc. This module is currently not fully implemented and is planned for future work.

17.3. Executive Implementations 

TDL (Task Description Language) [Simmons and Apfelbaum, 1998] is an executive software framework that provides capabilities to support the execution of a plan of activities or tasks.  TDL was created as an extension of C++ that simplifies the development of robot control programs by including explicit syntactic support for task-level control capabilities. These capabilities include task decomposition, fine-grained synchronization of subtasks, execution monitoring, and exception handling. TDL provides a compiler that transforms TDL code into efficient, platform-independent C++ code that invokes a Task Control Management library to manage task-control aspects of the robot system. TDL was developed by Carnegie Mellon University (CMU) and is distributed freely.  

In using TDL, we adopted the general framework and system code, but adapted it to provide the necessary Decision Layer functionality.  This adaptation included the development of domain model definitions and code to provide specific executive capabilities for CLARAty. 

17.4. General Executive Infrastructure

The Decision Layer is also intended to contain basic executive infrastructure that can be used to support different types of executive algorithms and implementations.  This infrastructure will likely contain interfaces and support for generic executive capabilities, such as task decomposition, exception handling, task synchronization, etc.  It may also contain other supporting code and visualization tools. This module is currently not fully implemented and is planned for future work.

17.5. Planner and Executive Integrations

The Decision Layer also contains support for tightly integrating planning and executive capabilities.  This support is currently providing by the CLEaR (Closed-Loop Error and Recovery) system, which provides an approach for unifying the planning and execution processes to increase the responsiveness of a robotic agent.  In particular, CLEaR contains specific functionality for having CASPER and TDL work closely together to create and execute a plan of activities. The CLEaR approach is to provide a tightly-coupled approach to coordinating goal-driven and event-driven behavior. Planning and scheduling capabilities are usually “goal-driven,” where they can reason about the requirements of high-level goals and general resource and state requirements.  These capabilities are typically used on a long-term time scale and consider the global state and quality of the resulting plan. Executive capabilities are more “event-driven,” which enables the system to react quickly to new events and modify the plan appropriately. These capabilities usually reason about near-term parts of the plan and only make local plan changes.  However, for many applications, it is beneficial to have these capabilities available to all activity granularities and plan timescales.  CLEaR provides this capability by allowing a planner and executive to operate on the same set of plan activities and allow goal-driven and event-driven behaviors to operate on both near- and far-term parts of the plan. CLEaR was developed at JPL and is built on top of the CASPER and TDL systems.  

17.6. Activity Database

Another component of the Decision Layer is the Activity Database.  This is a generic data structure that contains information on the current plan and can be use by different planning and executive system. The information in this database includes items such as instantiated plan activities, activity parameter values, plan timelines (which show how states and resources change over time), constraints on and between plan activities, etc.  During runtime, the Activity Database will also hold a copy of activity, state and resource definitions so that it may instantiate new activities into the plan.

Currently the Activity Database is part of the ASPEN and CASPER planning systems and is only used by these systems.  In future work, we plan to have all planning and executive systems share the same generic Activity Database structure.

17.7. Rover Models

The Decision Layer also contains model(s) of possible rover activities as well as resource and state constraints that must be followed for the particular rover and application.  Any generated plan must obey any relevant model constraints, such as resource limitations, temporal requirements, or instrument operation rules. Model information can be in the form of declarative or procedural knowledge. Declarative knowledge allows for the representation of goal or activity preconditions and effects (such as how much of a certain resource is required to successfully perform an activity). Procedural knowledge allows for the representation of constructs such as conditionals, loops, and how to decompose a high-level goal or activity into a set of low-level steps.   This model information is used by both planning and executive systems.  

17.8. Interfaces

CLARAty contains a set of interface software that connects the Decision Layer to Functional Layer capabilities.  The Connector class, which is used to communicate between these two layers, is discussed in Section 7. This section discusses the types of information that are sent between layers. 

Currently, the Decision Layer can interface to the Functional Layer in several ways. 

First, the Decision Layer sends commands to the Functional Layer and the Functional Layer returns status information on those commands. After plans are constructed in the Decision Layer, plan activities are mapped to commands.  When the commands are scheduled for execution, they are relayed to the correct Functional Layer object. After a command has been executed, the Functional Layer returns an execution status to the Decision Layer reflecting the success or failure of the command. Second, the Decision Layer queries the Functional Layer during plan execution for state and resource information (such as how much energy is left in the battery). A query can be for a single time point or for an iterative return of state over a time interval. Third, the Decision Layer can query during plan construction for resource prediction estimates associated with particular activities.  For instance, the Decision Layer might request an estimate on how much memory storage a science-data operation will require.

CLARAty also contains a set of interface specifications between planning and executive systems.  Since many planning and executive system are independent pieces of code (as opposed to an integrated approach such as CLEaR), it will often be necessary to pass information between the planner and executive.  We are in the process of designing a generic API and framework for relaying information between planning and executive system modules.  The type of information that would be sent between these modules includes activities, commands, queries, and state and resource data.  Currently this framework is still in the design phase.

Commercial Equivalents and Freeware

There are several companies that have planning and scheduling software products.  These include Analytical Graphics, Inc., (http://www.analyticalgraphics.com/) which provides analysis and visualization products for aerospace and other applications, and ILOG, Inc, (http://www.ilog.com/) which provides resource management and automation software for application areas such as aerospace, transportation, etc.  

Related Mission/Flight Adaptations

Some of the software systems mentioned in this section have been adapted to support several small missions that NASA has either jointly run or supported.  However, please note that none of this software has been used to handle critical mission or flight functionality such as entry, descent and landing or trajectory control.  This software is primarily used to schedule science observations and related activities, such as radar calibration, image acquisition, science processing, etc.  The CLARAty adaptation is intended to primarily support research effort as opposed to being used for actual flight software.
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