JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM

June 25, 1999

TO:

Dr. Samad Hayati, Manager

Mars Technology Program Office

FROM:
Dr. Issa Nesnas, Technical Staff

Tele-robotics and Applications Group

SUBJECT:
Results of Unified Robotic Software Study

Dear Dr. Hayati:

As part of the study, I have conducted individual meetings with several developers of robotic software. These were held as one-on-one meeting or with two people present at a time. Below is a list of the individuals that I have met with:

· Hrand Aghazarian

· J. (Bob) Balaram

· Eric Baumgartner

· Gene Chalfant

· Hari Das

· Robert Hogg

· Gerald Lilienthal

· Todd Litwin

· Mark Maimone

· Jack Morrison

· Richard Petras

· Rob Steele

· Richard Volpe

· Yalin Xiong

· Terry Hunstburger (briefly)

· David Zhu (briefly)

Below is a compilation of the comments that I heard. I tried to take notes during these meetings. I also tried not to bring in my biases in reporting people’s concerns. I would like to go over the compiled list with you.

Also I would like to discuss the timeframe you have in mind. This time of the year, it is difficult to get too much of people's time. So maybe we can discuss a schedule, if any, as well. I have prepared a WPA but held off on it until we meet. Please let me know when is a good time to meet.

Thanks

-Issa Nesnas

Feedback from a Study for Developing

a Unified Robotic Architecture

Over the past few weeks, I have met with several people developing or involved in the development of software for rovers and robotics applications. These meeting were informal meetings, hallway discussions, and lunch meeting. I wanted to develop a better understanding and familiarize myself with the various software that is being developed for robotic applications. The goal of these meetings was to explore the possibility of enhancing the integration of the different software components, the potential reduction of effort duplication, and the simplification of the interfaces to encourage a larger user group of each component.

During these meetings, we discussed the goal of developing an object-oriented design for the most commonly used components in robotic systems. The goal is to develop robust, well-tested, extendible set of basic tools that will be available for people developing complex robotic applications.

Here is some of the feedback that I gathered from these meetings:

On the Overall Concept:

· Most people agreed that the overall concept is good and can be useful.

· Almost everyone agreed that, at the very least, we should have a better way for becoming aware of available software that other team members develop in addition to word of mouth. A web-based repository that classifies the different software components is one example. A regression test suite and simple examples for how to use the software are necessary.

· These tools might help in implementing higher level algorithms much faster for new rover/robotics applications.

General Concerns:

· One monolithic architecture will NOT work because of the nature of the different projects. They have different requirements and constraints, use different hardware, and are developed by various teams. A unified core architecture is more suited when you have the different variations of one system. Historically at JPL, there has been several attempts at implementing such an architecture.

· Research and flight tasks require new creative ways of thinking about and solving robotics problems. Such architecture can be a hindrance to the creative thinking process.

· People like to write code their own way and that makes them more efficient. How much will they benefit from using this common software?

· There have been several similar efforts in the past but none are used today. Why would this be any different?

Implementation Concerns:

· There are few differences on how best to implement these basic software tools. While most people think that an object-oriented approach and UML compliance is suitable, there are several concerns about the suitability of such implementation under real-time platforms.

· There needs to be some discussion on what operating systems this software needs to be support (maintain). People might what to explore the different real-time/soft real-time operating systems. Then how does this repository help support the different users and their needs?

· Support for several languages is very difficult due the small size of the robotics community.

· Another point is whether you make these various components of the architecture well-integrated or loosely-coupled with many filler and wrapper functions.

· Should we simplify the user interfaces for these components to make them more user-friendly, or should we just provide the functionality? If there are no easy to use interfaces and examples, will others use these components.

Maintenance Concerns:
· Having a coherent architecture is very difficult to maintain.

· How will changes to the software architecture be synchronized?

· How will the software be maintained? Several people think that it is important to have a single point of contact responsible for maintaining the integrating the various components especially when there are code dependencies among various software pieces.

· How do you keep this current design concurrent with the latest technology developments?

Concerns on time and management:
· What is the management's commitment level to implementing this architecture.

· How much money and support will it have?

· People are always very busy with their current projects. How many people will be assigned to this and at what capacity?

· The development of flexible and reusable software is a huge time sink for people working on other projects. Will task managers and supervisors support this effort?

· Can we justify the high cost of developing reusable code in light of the small number of users (about 50 people in the robotics community)?

· How is the general architecture developed by MDS impact this work?

· How can we leverage/use their knowledge and technology to get to our goals faster.

· Because the robotics is spread all over JPL, little communication occurs among the developers and very little experience is shared. This in itself might not be bad since you would might want to explore different solutions for the same problem. However, if that is the case, then a common architecture might not be suitable here.

· Because the various projects have different requirements, each project needs to be aware of the available tools and select whatever fit their needs.

· To have a successful implementation of common code, there needs to be a strong commitment level from the developers/users. Currently, most people are reluctant to commit to an unknown.

· For such effort to succeed, there are different viewpoints: (a) some think that a big momentum is needed for this to succeed with lot of advertising. Another (b) think that an evolutionary experimental tests might work best.

One Proposed Approach: (an idea that can be explored)

Due to the complexity of this proposal and the need for cooperation from a large number of developers, we could explore an evolutionary approach:

1. Develop a small experimental component and make it available to the community. The type of component can be voted on by the community. Test how this component will be used by others. See if the approach we adopt is successful.

2. We start by taking all working code in a specific area from the various developers, and with a team of two or three people, try to redesign and re-implement this piece to incorporate all concepts used while maintaining efficiency and extendibility. We will review existing case studies. We propose to use the same approach as MDS: mainly, UML and C++ for the design and implementation.

3. Since it will take several iteration before we get it right, it will be valuable to carry this experiment on a single component of the overall software at first.

4. Slowly we extend this to other component and constantly re-evaluate how things are evolving.

5. It is important to keep the team small and the pace fast. It is also important to note that this will not fit all needs. These will be just tools that can be used to help developers.

Personal Note:

I am hopeful that we can do something to improve what we have today. The best approach still needs to be determined

-Issa A.D. Nesnas

Samad:

After our meeting on Friday, and a discussion with Hari Das, below is

a preliminary approach for a task that can attempt to implement a

unified software architecture. With your vision and guidance, we can

refine and improve this draft plan.

Thanks

-Issa

DRAFT TASK PLAN:

- Due to logistical problems, instead of having a large design team

develop this architecture, we have a small team of 2-3 people who will

interact with the rest of the robotics community to solicit inputs and

identify problem areas. This way, the rest of the community will not

be consumed with lengthy meeting and discussions. Our small team will

work efficiently to produce fast results.

- Based on inputs from the different developers as well as code they

provide, our team will study the commonalities and differences of the

various implementations. We then design an object-oriented

implementation to try to incorporate all the concepts and features of

the various implementations. We will maintain efficiency,

extendibility, and modularity of the newly designed piece. We propose

to use a similar approach to the MDS team: mainly, UML, C++, and other

tools that they identified and evaluated for their implementation.

- Once a sub-system has been designed, implemented, and tested, we

distribute it to the developers who provided the original input and

code, and to all potential users. They can review it, criticize it, and

propose changes to the implementation. The design will be reviewed and

re-implemented if necessary. Each sub-system implementation can take a

few iterations before a final version becomes available for use.

PLAN:

=====

FIRST MILESTONE: (1-2 months)

- Evaluate several off the shelf tools such as Raphsody, RogueWave

Libraries, etc. to see if they should be used as tools in implementing

this architecture.

SECOND MILESTONE: (4 months)

- Develop a system level breakdown and illustrate the interfaces

between the various sub-systems for robotics applications. Identify

the necessary constituents and select one sub-system to be

implemented for the next milestone, e.g., the mobility sub-system, the

manipulation sub-system, or the vision sub-system.

THIRD MILESTONE: (8 months)

- Set up at least two different computing platforms, and provide at

least two different operating systems that will be used in the final

testing. This is in addition to a simulation platform.

- Implement related hardware (for the selected sub-system) from at

least two different existing rover/robotic platforms. Related hardware

is, for example, motor controllers for mobility sub-systems, or

framegrabbers for the vision sub-system, etc.

FOURTH MILESTONE: (12 months)

- Develop the complete implementation for the selected sub-system,

including the web-based documentation and test software. Demonstrate

how this software can be used on the various platforms and

hardware. Demonstrate how higher level code can be written with ease

and be implemented on the different mockup platforms.

- Get feedback on the design and implementation to guide further

modifications.

FIFTH MILESTONE: (15 months)

- Demonstrate the software for the single sub-system on at least two

different vehicle/rover platforms. This task will be responsible for

demonstrating this architecture on multiple rovers/robots.

- Start the design and implementation of the next sub-systems and

constantly re-evaluate the evolving software.

