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Abstract— We propose three categories of measures and locomotion, pose estimation, navigation and inwefato
procedures for this Workshop on Measures and Procedes for higher level planners.
the Evaluation of Robot Architectures and Middlewar. The The areas of robotics covered within the CLARAtgteyn

categories are Programmatic, System-Engineering and . . . . : .
Component-Specific. Within these categories, we  suggest include hardware interfaces, kinematics, manipoitgti

measures and procedures that we have identified fio our ~ MOPility, estimation, control, vision, navigation &ath
experience with the CLARAty reusable robotic softwae. planning, and artificial intelligence planning.

|I. INTRODUCTION Il. CATEGORIES OAMIEASURES ANDPROCEDURES

OUR selection of measures and procedures for the atiaitu We have taken a very general interpretation ofvibed

of robotic software systems has been strongly émfbed by measure in the context of this discussioMeasure, in this
our experience with the CLARAty system (Volpe 2001paper, includes any method of characterizing a trobo
Nesnas 2003, CLARAty 2005, Nesnas 2006). CLARAty isoftware or middleware system. In many of our cases
an on-going development at JPL and collaboratingSNA measures are descriptive rather than quantitafive.these
centers and universities with a legacy of over years of cases, where possible, we have attempted to be precese
development. It is a framework for reusable robstiftware. and objective by listingneasurements as a selection from a
At its lowest level, CLARAty implements software list of choices. Please see item 1 in Table | foegample.
abstractions for hardware interfaces in an objeented It is useful to categorize measures and procedioes
hierarchy. Upon this hardware abstraction layerysable robot software architectures in order to charantethem.
software components are built to interface to hidleels of While there are alternative, possibly better, catieg, we
control. As a result, software to implement comgdekavior have selected the following threBrogrammatic, System-
and sophisticated operations is platform independerEngineering and Component-Specific. Our categorization is
Examples of such capabilities include pose estonati organization-centricProgrammatic measures are mainly of
navigation, locomotion and planning. In addition tdnterest to managemersystem-engineering measures are of
supporting multiple algorithms for each capabilityjnterest to the system engineer and ¢beponent-specific
CLARALty provides adaptations to multiple roboticdamver measures are of interest to the developers ofdheonent.
platforms. CLARAty is a domain-specific robotic This classification is adequate for our discusdiecause it

architecture designed with four main objectives: helps organize our measures and assigns respdgsioil

1. To promote the reuse of robotic software infragtmee ~ them to a person in the development team hierardrere
across multiple research efforts are other possible categorizations. Fenton (20085 |

2. To promote the integration of new technologies Products, Processes and Resources as an approach used for
developed by the robotics community onto rover categorizing software measureSructural, Code Metrics
platforms and Hybrid are the categories used by Kafura(1985). A

3. To mature robotic capabilities through reuse arabn  potential outcome from this Workshop, in addition t
independent formal validation identifying measures and procedures, could be a

4. To share the development with the robotic commuoity categorization that the community agrees on.
promote rapid advancement and leveraging of
capabilities
Development of the infrastructure to support these

objectives is continuing in many directions inclugli

improved interfaces to actuators and sensors, @amer

modeling and image processing, mechanism modeling,



TABLE 1A
PROGRAMMATIC MEASURES ANDPROCEDURES ARCHITECTURE

Meas./Proc.

Description

Measure
Criteria

Architectural
Approach

A number of architectural approaches are possitdkding:
1. Abstract Model Approach: uses abstractions as first order elements ir
architecture. Uses a hierarchy of abstract andrete models to represe

Multiple
ttigoice from
none of the

logical and physical devices and capabilities. dUsechnologies from options

object-oriented design, component design, and gepesgramming. (add
CLARAty example, Control Shell, OROCOS)
Data Centric Approach: uses data as first order elements in the des
Uses public and subscribe mechanisms in a databdied system (ad
reference) (add DDS example).
Service-Oriented Approach: uses services as first order eleme
Services are language independent, computationdiyributed, and
stateless (state and intent) services as first romlements in the
architecture. For example, in MS Robotics Studefefence) state an
intent come into a component through an XML documemich procesg
and generates an XML output document.

4. Other Approach: approach does not fall within above categories.
This item may, alternatively, be grouped in 8ystem engineering category.

sign.
)

nts.

D
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Programming
Paradigms and
Languages

Two primary programming paradigms have been usedhntics: (these can alg
go into the Architectural approach)
1. Procedural programming paradigm: This paradigm uses progrd
logic to define the sequence of robot actions. sTgaradigm is mosg
prevalent within the robotics community.
Declarative programming paradigm: This paradigm defines the rob
actions using pre- and post-conditions, and the&s assearch engine
generate the program logic. This paradigm is rpostalent within the
Artificial Intelligence robotic community (e.g. CAER 2007).
There is also the choice of the programming langubgsed on the selects
paradigm. Within procedural languages there arectiomal programming
languages like C or Fortran and object-orientedymming languages like CH
or Java. With the declarative programming paradignst languages are custg
ones developed at research labs.

oMultiple

choice.
m_anguage
t choice

ot
to

+

m

Architectural
Heterogeneity

A measure of the heterogeneity of the architectyratadigms and programmiri
languages that are used:
1. Low Heterogeneity: one dominant architectural paradigm and a sif
programming language.
2. High Heterogeneity: multiple architectural paradigms and multig
programming languages.

dMultiple
choice

ngle

le

Deployment
Architecture

There are a number of parameters that charactbezeéeployment architecture o
a robot software system. These include:
1. Computational architecture
a. Single centralizednode
b. Distributed homogeneousor heterogeneousnodes
2. Operating systemtype:
a. Soft real-time
b. Hard real-time
3. Type andscaleof processors:
a. Integer-based processor vs. processors with figagiint support
b. X86 family, PowerPC family, SPARC family, etc.
4. Type ofcompilersto be supported

f Multiple
choice from
one of the
possible
combinations
of these
options.




TABLE 1B
PROGRAMMATIC MEASURES ANDPROCEDURES SOFTWARE DEVELOPMENT

Meas./Proc. Description Measure
Criteria
Development | There are a number of integrated development emviemts [DE) available for | Multiple
Environment software development. Examples are Eclipse anda¥/Studio. Developers may, choice.
alternatively, use other home-grown environmentsdmbining components
needed for development. IDEs can have an affaitgand productivity of the
software development and testing process.
Code Code organization describes software system decsitiggoto modular units. Descriptive
Organization There are two levels of code organization. The firshe organizational structutemeasure

within the execution environment to facilitate méatity, encapsulation and cod
re-use. This is discussed in greater detail uRdactional decomposition under
System-Engineering in Table Il. The second level is the organizatigthin the
development environment. Options include decomjowshiy function, by
developer and other source. The organization may adlat or hierarchical
structure. There are probably as many approachmesdanization of robot
software as there are implementations. Choices nastame of the items listed
above like architectural approach, deployment &chire and one or more
languages used will influence the organizatiorhefgoftware.

e

Coding
Standards

Coding standards define how the software will bitem. This is useful becauss
it helps unify the format of the written softwanedafacilitates sharing software
among developers. Standards (for example on usrcefption handling or
function return types) also help maintain a uniféewel of quality throughout th
code. The ANSI ISO/IEC14882 standard [ANSI 1988 nsexample standard
that may form the basis of a team’s coding standard

Reference to
ANSI or
other

b standard.

Documentation

Documentation of software is amegnely important element of the software
production process. It is a means of communicatitiin the development tean
for users and an information repository to captheedevelopment effort for
future use and maintenance (Sommerville, 2002)rd hee many categories of
documentation ranging from high-level user docuon, technical
publications of algorithms, to low-level code conmhdocumentation.
Consequently, there can be many measures to qudotiimentation. These
include percentage of lines of documentation inre®eode, effectiveness of th
documentation, maintenance and correctness of daxtation especially
through software revisions, number of journal anfecence publications and sg
on. Automated documentation procedures can bepocated into the software
development with little effort, for example, withdis like Doxygen.

Multiple
n,measures (se
description).

11

Developer-
Coordination
Procedure

Procedures for coordination of multiple and pogsibéparate developer teams
are critical for successful integration, testingl aeployment of robotics
software. Developer coordination procedures incldgeeloper training,
meetings and tele-conferences, coordinating ex@hgisifs with software
deliveries, maintaining mailing lists, announcimft&are commits and releases
and maintaining a website for documenting develagmeocedures, status, ang

system information.




TABLE 1C
PROGRAMMATIC MEASURES ANDPROCEDURES SOFTWARE QUALITY

Meas./Proc.

Description

Measure Criteria

10

Coherence

Although hard to quantify, we suggés& measure to indicate th
importance of developing software that adheres dond efficiently
embodies its design philosophy. An example, takemfthe CLARAty

development, is the attempted design of the classtsre at the abstra¢

motor level to be also reflected at the abstracbhwotor level. This
measure attempts to capture the consistencieac¢onsistencies) in desig
patterns between architectural elements througkgstem. A suggeste

quantification of this measure is to enumerate ittances where the

design philosophy is not followed.

o

eNumber of violations
of design philosophy.

—+

=]
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Code Size

The number of source lines of codeO(@Lhas been proposed as
measure of the size of a software package. PhySIdalC counts the tot3
number of lines in the software while logical SLOEL the number of
statements in the package.

Bhysical and Logical
ISLOC.

12

Complexity

There are many possible metrics tat capture the complexity in

software package. All the following increase thenptexity in software:
1. Number of processor nodes
2. Combinations of different processor types (for eglnmPPC ang

x86 vs. only PPC or only x86, or x86 with embeddeitro

processors that you write firmware for),

Use of more than one programming language (lineaoa linear)

Variety and content of information in an algorithm

Number of algorithms in the system,

Number of sources of algorithms in a system (i.emiper of

developers that are collocated and number of Higed

developers)

7. Choice of complex vs. simple algorithmic solutiqfer example,
closed form vs. numeric solutions for kinematicglgnamics)

8. Number of sensing modalities

9. Amount of effort that has gone into the developmemasured a
the number of work hours).

10. The Cyclomatic number (McCabe 1976).

ook w

aMVlultiple measures (se
description).

"2
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Software
Validation and
Verification
Procedures

To maintain the quality of new components integfaite to a software
system, procedures for design review, implememapiacess, validation
verification, and maintenance are needed. Theseeftwes help ensuf
that the component complies with the system destgndards, meet th
desired interface requirements, are implementegkctly and adhere to th
development policies.

Matrix checklist for to
,ensure all proper
eprocedures are
efollowed
e

14

Regression
Testing
Procedure

Measures to evaluate regression testing includiedtidg if an automateq
process exists, enumeration of unit test covenagether it is multi-target
test frequency, consistency of the implementatibarot tests, consisten

1 Multiple measures (se
description).
t

report of results, and memory leak checking.

We list metrics and procedures from our experiemitie
the development of the CLARAty robot software

architecture (centralized single processing comgutiersus

architecture. Our list is not exhaustive — therk bvé items

that overlap and are missing in comparison to itgoms
other groups participating in this Workshop.

The reader will notice that there is overlap amsoge
items listed. For example, a measure of softwarsesy
complexity has some overlap with

A. Programmatic

to the manager, systems engineer
software architecture. They provid

the deploymenp! describing the overall

distributed multiple-processor computing). We willot
attempt to identify or quantify these overlapshiis fpaper.

Programmatic measures and procedures are itenmseoést

, or end useeabtiotic
e: 1) a commaoglege

robot software systenr fo
comparison against other software systems, 2) gigasnto



TABLE IIA
SYSTEM-ENGINEERING MEASURES ANDPROCEDURES

Meas./Proc. Description Measure
Criteria
Functional The functional decomposition of robotics softwamn de done in many Descriptive
Decomposition | ways. The architectural design will have a stromjluence on thg measure.

decomposition of the software. Two decompositionspposite ends of th
spectrum that reflect different architectural stydee:

1. A flat-structure with groupings of signals, prodags blocks,
control models, and finite-state machine models,
An object-oriented hierarchical models with utdgi and hardwar
abstraction objects at the lowest level and bugdip to high-level
user interfaces at the top-level.

2.

e

D

Access Levels

This measure will answer the corestiDoes the architecture allow forNumber of
access at different levels of granularity, anddf Bow many and at whataccess levels,

levels?” Possible access levels include at theadigO, motor, motor group
locomotor, navigator or robot levels. This is usdfacause it tells us th
levels at which one can interface to hardware dedlével at which reus

can occur without the overhead of unnecessary aoftwDoes the

architecture provide an API for a motor, camerayexa group, IMU, digita
I/O, etc, navigator, locomotor, etc.

, descriptive
emeasure of
elevels.

Sub-system
Coverage

Robotics includes technology from many differerdciflines. Furthermore
the technology itself is expanding with the rapidvelopment of new
innovations. No robotics software system can ingludll possible
technologies. However, common sub-systems thatiged in many robotic
software systems can be identified. These inclagel (may be further sul

divided): vision, locomotion, manipulation (serigdarallel, hybrid), pose
estimation, navigation, trajectory generation, matontrol, 1/0, and math

utilities. A measure we suggest is to draw up agatzation of these sul
systems (it may have a hierarchical structure)iaditate the coverage of
software system over the structure.

, Sub-system
coverage
percentage.

5

a

Separation of
physical and the
logical

hierarchy

The effort needed to integrate a new low-level ivarg device into a robg
software system without disrupting its high-levedftware is a usefu
measure of how well-designed and adaptable thewvawdt is. Another
measure that could capture a similar capabilitthes number of hardwar
devices performing similar functions but with diéat interfaces that hay
been implemented in the software system. For ex@nipt motor control,
there are a variety of hardware-dependent mototr@loarchitectures base
on centralized, distributed, or other configurasiorin addition, motor
control may be performed on a CPU, with specializ@mtor control chips
(LM629, HCTL1100, etc.) or COTS boards. A cleanaagion betweer
classes and drivers for a particular hardware @e&iwd a generic APl layeg
facilitates easy incorporation of new devices withohanging the existin
software interfaces.

t Effort to
implement new
hardware

edevice.

eNumber of
different device

dinterfaces
implemented.

=

measure the quality and efficiency of the overaltvgare
development approach, and 3) procedures to manage a
improve the quality of the software developmentcpss.

Many of these items are relevant for any large vk In the SystemEngineering category are measures and
system. Some are particularly relevant to robotwsok 9 9 gory

systems. We have grouped these measures and p'rm\:edBrocedures of interest to the systems engineeo,tsﬂﬁyvare

into three categories related to: (1) system azchite, (2) Ceveloper, or the expert (or power) user. Thesesitare

software development, and (3) software quality. [&d5 — metrics and procedures related to technical cagabjl to

IC describe items in each of these categories. sub-system design, interfaces between sub-systems o
approaches implemented. Items in this category are

B. System Engineering



TABLE IIB
SYSTEM-ENGINEERINGMEASURES ANDPROCEDURES

Meas./Proc. Description Measure
Criteria
Interface Interfaces between components within the robotwsos# system can beNumber of API
Stabilization designed to minimize changes needed on the otder ofi the interface changes per

when software on one side is changed. This is do@LARAty with the
use of complex data types. For example, @amera class uses th
Camera_Image data type for its argument in ttaequire function rather
thanusing raw data types such ast ¢ data, int nrows, int ncols). Using
raw data types makes implicit assumptions aboutyipe of image and it
pixel content. It will be useful to have a measiareapture how stable th
interfaces are in the software. One possibility fllis measure is th
number of APl changes for every revision. Anotherthie conciseneg
(number of arguments used) and ease of use offte A

revision.

o Conciseness ang
ease of use of
the APIs.

5

e
e
S

State Managemer

t The following questions can asdess state management in the softwa
1. Is state dealt with in a consistent manner througtize system?
2. s state logging dealt with in a consistent way?

3. Does the system have mechanisms to synchronizelgidates?

4. Does the system provide mechanisms to update eliffestates af

different rates?

1r€es/No answers
to listed
guestions.

Uncertainty
Representation

Stochastic representation of information is useful robotic systemg
because there is often much uncertainty in the mmaafehe environment
that robots operate in. The following two questighge basic measures
how well a system addresses this capability:

1. Does the system have a means to represent untg?tain

2. Does it support and interoperate more than one?type

Yes/No answers
5 to listed
bfguestions.

Shared resource
handling

Some resources in robotics systems are shared artwemgor more
processes. Examples include memory, hardware devicever, hardwarg
busses, and computational time. We suggest thesstigns as a methg

Yes/No answers
2 to listed
dquestions.

of measuring how well a software handles sharealress:

1. Does the system support multiple clients accessinghared
resource?

2. Does the system support reasoning about sharedroeso(e.g|
queries about current resource state)?

3. Does it support queries on planned usage (how mesburce

usage do motors in an arm use for a given trajgi@or

especially important because robotic software dguaknt However, there are many more measures and procethaie
is a highly multi-disciplinary field and most apgdtions are unique for a particular field of robotics. Axaeple is
require the integration of sub-systems from mudtiplthe error between the results of a pose estimatigorithm
disciplines and developer teams. Detail descrigtiofnitems and ground truth. This measure is only relevantafgrose
in this category are listed on Table I1A — IIB. estimation algorithm. Furthermore, it is only measle
under a particular set of laboratory conditions.m8o

< Component-Spetc_|f|c measures in this category are listed on Table-HINB.
Component-Specific measures and procedures related to

particular implementations of capability, withinspecialty
or field of robotics, are included in this categoihese

measures and procedures are applied to capabilitiesRObOt software Siﬁt emsbartg getrr:e;ally very cotzjm:a;re
implemented within a sub-system and are of inteteshe ared iomeblarteas w t'm rf' otics hat are easyorbu'z@ 'z€
sub-system developers and system-engineers. Tresame and be able to quantify. However, many areas are

general measures and procedures that apply fowaaftin difficult to generali_ze and pr_ecisely guantify. P#e the
this category. An example of a measure that is rgéi@the challenge, developing quantifiable measures andeglares

computational time for an algorithm. This measur@yrbe ]1:or r?rl])ot sogtvxflre systems V.\:" Iegg toa _nuTnzebqﬁeflts d
applied to an inverse kinematics or a stereo-visigorithm. or the robotics  community. €se Include Improve

I1l. CONCLUSION



TABLE IlIA
COMPONENTSPECIFICMEASURES ANDPROCEDURES

Meas./Proc.

Description

Measure
Criteria

Generality

There is a trade-off in modeling effand computational cost betwe
algorithmic generality and customization for pastés applications. A
simple example is the inverse kinematics of a kénlk robot arm. We
can write a general-purpose algorithm to numesicsilve for the inversg
kinematics of all serial-link robot arms or write algebraic solver thg
solves for particular configurations of robot arrirsrobotics, generality
is often relative — an algorithm that handles $enl parallel robot arm
is more general than one for only serial arms. Andlgorithm for hybrid
serial and parallel arms would have a higher gditeraetric. Handling
multiple end effectors simultaneously would addreweore generality
and so on. For specific areas of robotics, we date sthe level of
generality with respect to the types of systemsaih handle and th
restrictions (assumptions) for particular algorighnit should be note
that more general is not necessarily better becaust be at the cost o
computational cost and development effort.

chevel of
generality —
specific for

b each area of

trobotics.

X

Numerical

Precision/Accuracy

When comparing alternative approaches that pertorsimilar function,
for example a dynamics simulation, it's possiblentonerically measur
output and compare differences. In some casesngayse estimation o
stereovision, it's possible to compare estimatiesults against groun
truth. For measurement purposes, a reference egamgy be develope
to compare alternative approaches.

Field-specific
B numerical
r result for a
dreference
dexample.

Computational
Cost/Efficiency

Computational cost is a measure that can be qiehtfbr particular
implementations of algorithms on particular platfist

Computational
cost

Actively
Maintained

Actively maintained components are modules in tludtware that
continue to be updated. Updates improve the soffwadapt it for more
platforms, increase computational speed, and soTbere is a cost
however, in maintenance (see below) of active corapts.

Is a component
» frozen or
, active.

development processes and resulting quality, mettfod [4]
predicting schedules and identifying risks, and riogetfor
comparing alternative approaches. 5]
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TABLE IIIB
COMPONENTSPECIFICMEASURES ANDPROCEDURES

Meas./Proc.

Description

Measure
Criteria

Level-of-
integration

The CLARALty software has developed four levels taumtify the level off
integration of a software module. These are:

I. Has been deposited into the CLARAty software repogias a

stand-alone package, with test software and usardentation.

II. Interacts with other components in CLARAty, runs anrobot
platform but does not use CLARAty APIs.
Runs on all CLARAty robot platforms, has no™ 3party
undocumented dependencies and meets CLARAty ARtiatd
Reviewed by development team, meets CLARAty corivasf
uses all relevant CLARALy classes, provides acte#sternal datg
and is maintained with other CLARAty software.
Note that internally developed modules often staitevel 1l to 11l while
modules delivered from collaborators will oftenrstt Level I.

Level as
defined.

Validation and

Defining a validation procedure for an algorithmigseensure that it

Component

Verification meets the requirements of an application. Somerittigts are easier tp specific
validate than others. For example, we can deterifiinematrix inverse measure.
algorithm is correct but it is harder to automdticaalidate a locomoto
move command.

Management There are a number of factors that affect how é@agy to maintain 4 Combination of

Overhead software component. Maintenance is easier if vl integrated, and previous three
has automated validation and verification proceslure measures.

Component- There are many field-specific measures and proesdtinat may be Field and

specific measures | relevant for particular fields but not for others. algorithm

and procedures specific.




