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Abstract— Future planetary science exploration will demand 
more capable and intelligent robots.  Software plays a key role as 
it embodies the intelligence of a machine. To advance robotic 
technologies it becomes necessary to effectively share and reuse 
robotic technology implementations across projects.  This calls 
out for a common framework for integrating robotic software to 
address its numerous challenges.  This paper presents the 
CLARAty robotic software framework that was primarily 
developed by the Mars Technology Program for integrating 
advanced robotic technologies from its competed programs and 
their deployment on NASA’s research rover fleet.  We will 
present the multi-institutional development process and highlight 
some of the principles adopted in developing CLARAty.  We will 
summarize both technical and non-technical challenges and close 
with an example of the successful sharing of robotic software 
infrastructure and component technologies among institutions. 

I. INTRODUCTION 
HE development of intelligent robotic systems is hard 
because of the multi-disciplinary nature of its 
constituent technologies and the complexity of their 
integration. The process of bringing intelligence to a 

robot requires the effective melding of sensing, reasoning, and 
motion technologies. As such, software plays a key role as it 
is the medium that embodies intelligence in a machine [1].  

Nevertheless, within the NASA robotics community, and to 
a large extent within the research community, the majority of 
robotic software is designed and built from scratch for each 
new robot. To date, it may have been easier and more cost 
effective to do so. However, as the need for more advanced 
robotic capabilities for future science missions increases, it 
becomes necessary to leverage prior robotic technology 
investments.   

Effective leveraging of software from multiple sources 
requires the addressing of both architectural and integration 
issues.  Therefore, it is necessary to have a dedicated and 
focused effort that addresses current needs but one that is also 
forward looking to support future advances in robotic 
technologies.  A natural outcome of such an effort would be a 
common framework for the development, deployment and use 
of robotic technologies across institutions. 

Advancing state-of-the-art in robotic technology involves 
the effective sharing of software across institutions.  Without 
such effort, disparate robotic efforts will be hindered by the 
need to reinvent and re-implement capabilities that exist in 
other systems or have existed in the past but have been 
abandoned after the project has been disbanded and its 
developers dispersed. 

To that end, the NASA Science Directorate, through its 
Mars Technology Program, has been developing the 
CLARAty robotic software framework [2][3].  The main 

objective is to enable the effective leveraging of robotic 
software capabilities among participants to achieve a higher 
level of robot intelligence.  Program participants are 
distributed among NASA centers, universities and industry.  

CLARAty stands for Coupled-Layer Architecture for 
Robotic Autonomy.  It is a generic framework for reusable 
robotic software that facilitates the integration and deployment 
of advanced technologies onto NASA’s robotic platforms. 
CLARAty is a multi-institutional collaboration with software 
developers at four institutions:  the Jet Propulsion Laboratory 
(JPL), NASA Ames Research Center, Carnegie Mellon and 
University of Minnesota.   

CLARAty has been deployed on multiple platforms over 
the past several years. Figure 1 shows two such platforms: the 
Rocky 8 rover at JPL and the K10 rover at NASA Ames. 
Other robots that run CLARAty include the Rocky 7, FIDO 
and K9 rovers and a commercial-off-the-shelf ATRV rover 
used by Carnegie Mellon and the University of Minnesota. In 
addition to these hardware deployments, CLARAty has also 
been adapted to the ROAMS high-fidelity simulator [4].  Both 
deployments were used by the Mars Science Laboratory 
Focused Technology Program for the validation of advanced 
robotic technologies for consideration by the flight missions 
[5]. 

This paper provides an overview of the development 
process and a description of the architecture. We also 
summarize the challenges of developing reusable robotic 
software and highlight some of the results that demonstrated 
higher-level robot intelligence through this collaborative 
process.   

Because this framework was designed to be generic, it can 
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Figure 1: Example of two platforms that run CLARAty: the 
Rocky 8 rover at JPL (left) and the K10 rover at NASA Ames 
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also support legged and aerial platforms which are of interest 
to the Lunar Exploration and Solar Systems Exploration 
Programs respectively.   

II. RELATED EFFORTS 
The idea of developing a common software framework for 

robotics dates back to two decades.  Several efforts including 
ones led by NASA ([6][7] and more recently [8]) recognized 
the importance of a disciplined approach to developing, 
integrating and validating robotic technologies. However, 
early efforts faced severe challenges and had limited success.  
Nevertheless, advances in both computational hardware and 
the software engineering are now enabling renewed efforts 
toward this goal.  

Such efforts can be divided into two categories: (a) ones 
that focus on the mechanisms for information sharing 
independent of the domain knowledge, and (b) ones that use 
robotic domain knowledge to drive the design.   

Among the efforts that focused on the mechanisms for 
information sharing are software component technologies [9].  
While such technologies have a larger applicability because of 
their general nature, the complexity of the software 
engineering, the maturity and scalability of the tools, coupled 
with their high-cost and the readiness of the community to 
adopt them hindered the wide spread acceptance for 
standardizing robotic architectures.  Some of the first 
examples of such architectures included Chimera [9], 
ControlShell [11], and the CORBA-based Mobility from 
IRobot.  Without a focus on domain models, such generic 
software tools, even though well-intentioned and designed, 
exposed too much software engineering and became too 
general and abstract for roboticists who were more concerned 
with furthering their robotic technologies than with software.  
Another effort that focuses on the form of the interface and 
less on the content is the Foundation for Intelligent Physical 
Agents (FIPA) [12]. 

In the second category, efforts that used robotic domain 
engineering focused on various aspects. These resulted in 
solutions with different emphasis.  CLARAty falls within this 
latter category. 

In this category, some architectures focused on spatial or 
temporal hierarchies [6], while others focused on behavioral 
hierarchies [13]. More recently, the focus has been on 
decompositions between decisional and functional layers 
[2][14].  Other architectures focused on the kinematics and 
dynamics domain [15] or on hard real-time services [16]. 

Some architectures emphasized standardizing interfaces to 
robot hardware and control processes. Probably the most 
visible effort is the Joint Architecture for Unmanned Systems 
[17], which aims at providing standardized message passing 
interfaces for all of the military’s unmanned vehicles. JAUS 
was initially developed by the Department of Defense to 
ensure interoperability among a family of Unmanned Ground 
Vehicles.  Later it was extended to Aerial platforms. Similar 
to CLARAty, JAUS defines interfaces that are independent of 
the integrated technology or the specific hardware platforms. 
While the goals of JAUS are similar to those of CLARAty, the 

approaches have significant differences. The JAUS 
architecture uses a single-level message-set, while CLARAty 
uses a multi-level abstraction model.  

Another effort that falls in this category is Player/Stage 
[18], which provides abstractions for robotic devices. It is 
based on a client/server model that uses socket-based 
communications, which requires a serialization scheme and 
incurs a significant cost for resource-constrained robots. 
Additionally, the current Player abstractions only address a 
limited set of capabilities primarily geared towards controlling 
commercial-off-the-shelf robots with simple mobility 
mechanisms. 

The former category led to solutions that were too general 
and complex for robotic researchers to adopt. The latter 
category resulted in domain specific solutions to problems 
with limited levels of software reuse within that domain. 

In addition to these efforts, during the last very few years, a 
number of worldwide initiatives have been undertaken.  In 
2002, Intel Corporation established the Robotics Engineering 
Task Force [24], which was a coalition of industry, academic 
and government participants. Modelled after the Internet 
Engineering Task Force, the RETF’s primary goal was to 
specify interoperable software interfaces for mobile robots. A 
session was dedicated to this effort at the 2003 IROS 
conference.  The IEEE Robotic and Automation Society has 
organized two full-day workshops [20][21] on Software 
Development and Integration in Robotics at its 2005 and 2007 
international conferences in Barcelona and Rome respectively.  
Supported by the Japan Robot Association, the Object 
Management Group established a Robotics Special Interest 
Group [22], which aims at defining a robotics domain 
architecture based on OMG’s standards.  

The importance and challenges of this emerging field are 
clearly demonstrated by the multitude of efforts within the 
military, space and research communities that are striving to 
establish software standards and frameworks for facilitating 
the integration of robotic technologies to enable faster 
advances in robotic intelligence. 

III. THE DEVELOPMENT PROCESS 
Driven by the desire to deploy more capable robots for 
planetary science exploration, NASA identified the need for 
establishing an integration framework for its robotic 
technologies that are being developed within the Mars 
Technology Program. At NASA, we were fortunate to have 
the programmatic support and a critical mass in advanced 
robotic development to enable us to make a contribution to the 
field of robotic software integration.  

The development of the CLARAty framework was possible 
for three reasons.  First and foremost, it was driven by the 
need to integrate technologies developed by external and 
internal participants of the two competed rounds of MTP’s 
NASA Research Announcements over the past six years.  This 
also opened the door for the integration of technologies from 
other NASA programs such as the Intelligent Systems 
Program, which was part of the Computing, Information and 
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Communications Technology Program (CICT), and other 
internal programs.  Second it addressed a programmatic need 
to, more cost effectively, share robotic technologies among 
centers and reduce the overall costs of robotic software 
development and maintenance for NASA’s heterogeneous 
research rover fleet.  Third, it enabled the validation of 
component technologies for consideration into flight projects.  
With an infrastructure that enabled the validation of robotic 
technologies, legacy algorithms from previous Mars missions 
have been integrated into CLARAty for formal validation.  As 
a consequence, these technologies serve as a baseline to 
compare recent advances against.  That not only helps 
establish a baseline, but it also enables the conduction of 
comparison experiments under controlled environments.  
CLARAty supported experiments with a high-fidelity rover 
and terrain simulator [4] and with research rovers operating in 
the JPL outdoor Mars Yard.  Examples of legacy algorithms 
that have been integrated into CLARAty include the Sojourner 
rover pose estimation algorithm [23], the MER vision-based 
obstacle avoidance algorithm [24], and the MER visual target 
tracking algorithm [25], and the MER visual odometry [26]. 
Figure 2 shows the multi-center CLARAty development and 
its close collaboration with other tasks that support the rover 
hardware fleet, the rover and science instruments simulations, 
and the science operator interface [27].  Technologies flow in 
from multiple external and internal programs and the flow out 
to independent formal validation tasks. 

From its onset, CLARAty was setup as a collaborative 
effort to bring domain experts from leading institutions to 
develop a common framework for space robots.  That group 
formed the core development team that focused on developing 
reusable robotic software for supporting the integration of 
advanced robotic technologies. Unlike some of the efforts 
mentioned in the previous section, CLARAty was grounded 
by the need to deploy the framework early to external 
technology developers in the program to integrate their 
products onto the rover fleet for formal validation. As a 
consequence, the overall process comprised the design, 
development, integration, deployment, validation, and capture 

of lessons learned to feed the next cycle of development.  This 
iterative development process enabled us to mature the design 
by capturing lessons learned from deployed systems. 

 The process of developing CLARAty was made easier by 
starting from existing implementations of legacy systems for 
each of the rovers.  We were lucky to have full realization of 
software for the Rocky 7, Rocky 8, K9 and FIDO rovers; all 
of which had software that was developed by independent 
teams.  We then did a commonality/variability analysis [30] to 
define the common abstract models for these systems.  Later, 
we adapted these abstract models back to these platforms and 
tested them on existing hardware. Our approach can be 
summarized as follows: 

• Capture requirements from domain experts at multiple 
institutions 

• Use global perspective across domains (motion, vision, 
estimation, navigation) 

• Identify recurring patterns and common 
infrastructure therein 

• Use domain experts to guide design 
• Define proper interfaces for each subsystem 
• Develop a generic framework to support various 

implementations 
• Adapt legacy implementations to validate framework 
• Encapsulate when re-factoring is not feasible or 

affordable 
• Develop regression tests where feasible 
• Test on multiple robotic platforms and study limitations 
• Feed learned experience back into the design 
• Review and update to address limitations 
After several iterations one hopes to have achieved a truly 

reusable infrastructure for that class of robots. 
The ultimate goal is to build a robotic software system that 

is reusable across robots and that supports different 
operational scenarios.  As a result the software has to be stable 
against hardware variability, flexible enough to accommodate 
the requirements of a continuously evolving application field.  
The software also has to be easy to understand and maintain.  

IV. THE ARCHITECTURE 
CLARAty adopts a layered architectural model, with each 
layer unified around a different programming paradigm.  
CLARAty decomposes robotic software into two layers: a 
decision layer and a functional layer. The decision layer uses a 
declarative programming paradigm, which has been the focus 
of research efforts within the artificial intelligence community. 
The functional layer uses a multi-abstraction model based on 
procedural programming paradigm, which has been dominant 
within the robotics community. These two programming 
paradigms are quite different for building robotic intelligence.   

The decision layer adopts a declarative programming 
paradigm where the programmer explicitly describes the 
activities, models, and constraints but does not provide any 
program logic (sequences, conditionals, and loops) that 
describes the order of execution. The program logic is 
automatically generated and updated by a search-engine that 
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examines all constraints and maintains a plan to order 
activities without violating these constraints [28]. 

Conversely, the functional layer adopts a procedural 
programming paradigm, which readily provides the program 
logic that contains the order of execution using activity 
sequencing, conditionals, loops, and concurrent activities. The 
execution is only altered through conditionals, exceptions, and 
dynamic binding. While declarative programming has larger 
flexibility in ordering activities than the procedural 
programming, it requires computational resources to generate 
the program logic and requires explicit constraints on all 
activities.  

Figure 3 shows the two-layer architecture with the decision 
and functional layers.  The functional layer uses a design 
based on object models.  Abstract models of various 
capabilities are defined with interfaces that link the different 
components in the system.  These models use different 
technologies and algorithms to implement the capabilities. 
This modular approach enables the evaluation of different 
technologies without having to re-architect the entire system.  
For example, the generic navigator provides an abstract model 
for navigating a rover in rough terrain.  Navigation algorithms 
with different algorithms have been adapted to CLARAty 
including the one that was used on the MER rovers on Mars 
[24].  

The design of the functional layer is governed by a number 
of principles [29] that evolved from the iterative development 
process described in the previous section.  We highlight some 
of these principles below: 

1. Separation of the intent from the implementation (the 
“what” from the “how”) 

2. Generalization and stabilization of interfaces by using 
complex data structures  

3. Separation of generic runtime models from platforms 
for specific ones 

4. Exposure of stable behaviors and interfaces while 
encapsulating state and runtime models 

5. Enabling integration of algorithms and adaptations of 
devices at different levels of abstractions 

6. Employing a cross-domain analysis to maximize reuse 
of data structures and optimize data flow 

7. Definition of common policies for cross-cutting themes 
such as time, uncertainty, and coordinate 
transformations 

8. Unification of the mechanism model representation 
9. Separation of the mechanism model from the control  
10. Separation of logical and physical hierarchies for 

devices 
Figure 4 illustrates the 5th principle.  It shows the abstraction 
levels of a locomotion example where access to hardware or 
simulation occurs at various levels. At the lowest levels, the 
control software interfaces to hardware or simulation using 
low-level analog and digital I/O signals. A higher level would 
be to interface through a serial bus where information is 
exchanged through formatted data packets as opposed to 
toggling I/O signals. At an even higher level, the software 
interfaces to a motor adaptation that understands motor 
commands. Higher levels include an interface to a group of 
coordinated motors, a wheeled locomotor, or a general 
locomotor.  The level at which the interface to hardware or 
simulation is made depends on the openness of the hardware 
or the level of fidelity of the simulator. For example, access to 
a custom-built robot often occurs at lower levels while access 
to a commercial-of-the-shelf robot occurs at a higher level 
because the manufacturer may only provide an interface to 
control the robot's motion and not individual wheels.  In this 
case, the concept of a motor is hidden in a layer that is 
inaccessible to the user. Such a system will have adaptations 
at the locomotor level providing only access to the locomotor 
interface as opposed to the motor or I/O level interfaces. 

V. CHALLENGES 
The primary challenge in developing reusable robotic 

software is software instability, which results from the 
variability in robotic hardware, variability in the operating 
environment and variability in the operational tasks.  In 
addition to technical challenges, developing unified robotic 
software has its share of programmatic challenges. 

Hardware variability results from (a) differences in robotic 
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hardware architectures, (b) differences in the hardware 
components used by various systems, (c) differences in sensor 
configurations for a given system or application, and (d) 
differences in the mechanisms that generate motion in a robot. 

To illustrate the extent of the latter, consider the variations 
within the class of wheeled rovers shown in Figure 5. 
Different mechanisms exhibit different capabilities, which 
have major implications on how the robots move and act. 
Controlling wheeled robots is very different from controlling 
legged platforms. Even among wheeled robots, fully-steerable 
(omni-directional) rovers can move laterally (crab) while 
partially-steerable (car-like) robots can achieve the same result 
only via a parallel parking maneuver Figure 5 (a) to (d)). 
Mobile robots with passive suspension conform to the terrain 
with no control over their tilt while those with active 
suspension have control over their tilt (Fig. 5(e) and (f)). 
Robotic manipulators have similar nuances depending on the 
number of degrees of freedom they have and their joint 
configurations.  

In addition to hardware variability, software instability 
emanates from (a) software complexity, (b) advanced 
algorithm integration, (c) architectural mismatches, (d) 
variability of tasks and tools (e.g. operating systems and 
software development tools). 

Beyond technical challenges, there are non-technical 
challenges in developing and sharing a common robotic 
framework.  First and foremost are the Export Control 
regulations that govern different software modules. In this 
paper, we described a generic software framework that 
enabled us to integrate different technical solutions including 
ones chosen for flight missions.  While we have demonstrated 
software interoperability of these algorithms on real platforms, 
access to different implementations may not always be readily 
possible.  Access is governed by a complex set of policies to 
ensure compliance with International Traffic and Arms 
Regulations (ITAR) laws.  As a result, we had to place 
sophisticated mechanisms to control access based on an 
individual’s credentials. 

In addition to ITAR and Commerce restrictions, there are 
Intellectual Property restrictions associated with software 
developed by multiple institutions.  From that perspective, 
CLARAty is divided into two categories: (1) infrastructure 
modules that have shared ownership among the centers and is 

governed by a single multi-center intellectual property 
document, and (2) individual technologies, each with its own 
Intellectual Property document. 

Beyond such challenges, there are practical challenges of 
developing software remotely across institutions.  These 
include challenges in testing and validating new features 
without shared hardware platforms.  

Despite these challenges, progress in this field has already 
yielded several rewards for multiple institutions.  Today 
robotic software infrastructure and algorithms are being 
successfully shared and validated across half a dozen 
institutions.  Such sharing enables the distributed teams to 
leverage each other’s developments leading to more efficient 
development and integration of advanced algorithms.  In the 
next section, we will describe one such example in some 
detail.  

VI. RESULTS 

The CLARAty framework enabled development and 
integration of capabilities from multiple institutions.  One 
notable example is the single-cycle instrument placement 
(SCIP) capability. 

Algorithms for SCIP were developed at various institutions 
and have been integrated into CLARAty and deployed on both 
the Rocky 8 rover at JPL and the K9 rover at NASA Ames.  
Figure 6 shows the SCIP capability, where a scientist 
designates a target from the science panoramic cameras at a 
distance of 10 rover lengths away. With its built-in 
autonomous capability, the rover would then drive while 
continuously tracking the target using the rover stereo 
cameras.  While tracking the target, the rover would use its 
body cameras to detect and avoid obstacles along the way.  As 
the rover gets closer to the target, the SCIP algorithm will 
switch the tracking of the target from the narrow field-of-view 
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(FOV) pancams to the wider FOV navigation cameras 
(navcams) that are mounted on the same articulated mast.  The 
rover will continue tracking the target after it has been 
handed-off from one camera pair to another.  As the rover 
comes up to the target rock, another hand-off operation from 
the navcams to the body hazard cameras (hazcams) is carried 
out.  This hand-off operation is more challenging because the 
body cameras has three times wider FOV compared to the 
navcams.  They also have a significantly different view point 
of the target.  During its final steps, the rover positions the 
rover base, continues to track the target from the hazard 
cameras and places the rover such that the target is within the 
arm’s reach.  The surface normal of the target is computed 
during this final approach phase to determine the rover’s final 
placement.  Once in its final position, the arm is deployed and 
the end effector motion is sensed as the rover touches the 
designated target. The science instrument mounted at the end 
of the arm acquires the data and the rover simulates a 
downlink to Earth. 

Such capabilities require the integration of a number of 
technologies such as: motion control and coordination of the 
mobility platform and the arm, stereo vision, visual target 
tracking, target hand-off, pose estimation, path planning, 
navigation and obstacle avoidance.  

For each component, a number of different technologies 
were explored.  For example, different techniques were tested 
for the visual target tracking included image-based tracking, 
shape-based tracking, as well as hybrid methods.  We also 
explored different technologies for pose estimation, which 
included wheel odometry methods and ones that combined 
wheel and visual odometry.  Multiple navigation algorithms 
have been used.  The component technologies were provided 
by JPL, NASA Ames, Carnegie Mellon and University of 
Minnesota.  

VII. CONCLUSION 
There are many challenges to developing reusable robotic 
software both technical and non-technical.  However, the 
scope of software development that is necessary to build 
intelligent software exceeds the resources that are available 
for most projects today. As a result, developing an 
infrastructure for sharing and leveraging each other’s software 
proved reasonably effective within our small team of a dozen 
institutions.  CLARAty is on the verge of makings its first 
public release and lesson learned from that experience will be 
published in a future publication. 
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