

1

Abstract— Future planetary science exploration will demand
more capable and intelligent robots. Software plays a key role as
it embodies the intelligence of a machine. To advance robotic
technologies it becomes necessary to effectively share and reuse
robotic technology implementations across projects. This calls
out for a common framework for integrating robotic software to
address its numerous challenges. This paper presents the
CLARAty robotic software framework that was primarily
developed by the Mars Technology Program for integrating
advanced robotic technologies from its competed programs and
their deployment on NASA’s research rover fleet. We will
present the multi-institutional development process and highlight
some of the principles adopted in developing CLARAty. We will
summarize both technical and non-technical challenges and close
with an example of the successful sharing of robotic software
infrastructure and component technologies among institutions.

I. INTRODUCTION
HE development of intelligent robotic systems is hard
because of the multi-disciplinary nature of its
constituent technologies and the complexity of their
integration. The process of bringing intelligence to a

robot requires the effective melding of sensing, reasoning, and
motion technologies. As such, software plays a key role as it
is the medium that embodies intelligence in a machine [1].

Nevertheless, within the NASA robotics community, and to
a large extent within the research community, the majority of
robotic software is designed and built from scratch for each
new robot. To date, it may have been easier and more cost
effective to do so. However, as the need for more advanced
robotic capabilities for future science missions increases, it
becomes necessary to leverage prior robotic technology
investments.

Effective leveraging of software from multiple sources
requires the addressing of both architectural and integration
issues. Therefore, it is necessary to have a dedicated and
focused effort that addresses current needs but one that is also
forward looking to support future advances in robotic
technologies. A natural outcome of such an effort would be a
common framework for the development, deployment and use
of robotic technologies across institutions.

Advancing state-of-the-art in robotic technology involves
the effective sharing of software across institutions. Without
such effort, disparate robotic efforts will be hindered by the
need to reinvent and re-implement capabilities that exist in
other systems or have existed in the past but have been
abandoned after the project has been disbanded and its
developers dispersed.

To that end, the NASA Science Directorate, through its
Mars Technology Program, has been developing the
CLARAty robotic software framework [2][3]. The main

objective is to enable the effective leveraging of robotic
software capabilities among participants to achieve a higher
level of robot intelligence. Program participants are
distributed among NASA centers, universities and industry.

CLARAty stands for Coupled-Layer Architecture for
Robotic Autonomy. It is a generic framework for reusable
robotic software that facilitates the integration and deployment
of advanced technologies onto NASA’s robotic platforms.
CLARAty is a multi-institutional collaboration with software
developers at four institutions: the Jet Propulsion Laboratory
(JPL), NASA Ames Research Center, Carnegie Mellon and
University of Minnesota.

CLARAty has been deployed on multiple platforms over
the past several years. Figure 1 shows two such platforms: the
Rocky 8 rover at JPL and the K10 rover at NASA Ames.
Other robots that run CLARAty include the Rocky 7, FIDO
and K9 rovers and a commercial-off-the-shelf ATRV rover
used by Carnegie Mellon and the University of Minnesota. In
addition to these hardware deployments, CLARAty has also
been adapted to the ROAMS high-fidelity simulator [4]. Both
deployments were used by the Mars Science Laboratory
Focused Technology Program for the validation of advanced
robotic technologies for consideration by the flight missions
[5].

This paper provides an overview of the development
process and a description of the architecture. We also
summarize the challenges of developing reusable robotic
software and highlight some of the results that demonstrated
higher-level robot intelligence through this collaborative
process.

Because this framework was designed to be generic, it can

T

CLARAty: A Collaborative Software for
Advancing Robotic Technologies

Issa A.D. Nesnas

Figure 1: Example of two platforms that run CLARAty: the
Rocky 8 rover at JPL (left) and the K10 rover at NASA Ames

2

also support legged and aerial platforms which are of interest
to the Lunar Exploration and Solar Systems Exploration
Programs respectively.

II. RELATED EFFORTS
The idea of developing a common software framework for

robotics dates back to two decades. Several efforts including
ones led by NASA ([6][7] and more recently [8]) recognized
the importance of a disciplined approach to developing,
integrating and validating robotic technologies. However,
early efforts faced severe challenges and had limited success.
Nevertheless, advances in both computational hardware and
the software engineering are now enabling renewed efforts
toward this goal.

Such efforts can be divided into two categories: (a) ones
that focus on the mechanisms for information sharing
independent of the domain knowledge, and (b) ones that use
robotic domain knowledge to drive the design.

Among the efforts that focused on the mechanisms for
information sharing are software component technologies [9].
While such technologies have a larger applicability because of
their general nature, the complexity of the software
engineering, the maturity and scalability of the tools, coupled
with their high-cost and the readiness of the community to
adopt them hindered the wide spread acceptance for
standardizing robotic architectures. Some of the first
examples of such architectures included Chimera [9],
ControlShell [11], and the CORBA-based Mobility from
IRobot. Without a focus on domain models, such generic
software tools, even though well-intentioned and designed,
exposed too much software engineering and became too
general and abstract for roboticists who were more concerned
with furthering their robotic technologies than with software.
Another effort that focuses on the form of the interface and
less on the content is the Foundation for Intelligent Physical
Agents (FIPA) [12].

In the second category, efforts that used robotic domain
engineering focused on various aspects. These resulted in
solutions with different emphasis. CLARAty falls within this
latter category.

In this category, some architectures focused on spatial or
temporal hierarchies [6], while others focused on behavioral
hierarchies [13]. More recently, the focus has been on
decompositions between decisional and functional layers
[2][14]. Other architectures focused on the kinematics and
dynamics domain [15] or on hard real-time services [16].

Some architectures emphasized standardizing interfaces to
robot hardware and control processes. Probably the most
visible effort is the Joint Architecture for Unmanned Systems
[17], which aims at providing standardized message passing
interfaces for all of the military’s unmanned vehicles. JAUS
was initially developed by the Department of Defense to
ensure interoperability among a family of Unmanned Ground
Vehicles. Later it was extended to Aerial platforms. Similar
to CLARAty, JAUS defines interfaces that are independent of
the integrated technology or the specific hardware platforms.
While the goals of JAUS are similar to those of CLARAty, the

approaches have significant differences. The JAUS
architecture uses a single-level message-set, while CLARAty
uses a multi-level abstraction model.

Another effort that falls in this category is Player/Stage
[18], which provides abstractions for robotic devices. It is
based on a client/server model that uses socket-based
communications, which requires a serialization scheme and
incurs a significant cost for resource-constrained robots.
Additionally, the current Player abstractions only address a
limited set of capabilities primarily geared towards controlling
commercial-off-the-shelf robots with simple mobility
mechanisms.

The former category led to solutions that were too general
and complex for robotic researchers to adopt. The latter
category resulted in domain specific solutions to problems
with limited levels of software reuse within that domain.

In addition to these efforts, during the last very few years, a
number of worldwide initiatives have been undertaken. In
2002, Intel Corporation established the Robotics Engineering
Task Force [24], which was a coalition of industry, academic
and government participants. Modelled after the Internet
Engineering Task Force, the RETF’s primary goal was to
specify interoperable software interfaces for mobile robots. A
session was dedicated to this effort at the 2003 IROS
conference. The IEEE Robotic and Automation Society has
organized two full-day workshops [20][21] on Software
Development and Integration in Robotics at its 2005 and 2007
international conferences in Barcelona and Rome respectively.
Supported by the Japan Robot Association, the Object
Management Group established a Robotics Special Interest
Group [22], which aims at defining a robotics domain
architecture based on OMG’s standards.

The importance and challenges of this emerging field are
clearly demonstrated by the multitude of efforts within the
military, space and research communities that are striving to
establish software standards and frameworks for facilitating
the integration of robotic technologies to enable faster
advances in robotic intelligence.

III. THE DEVELOPMENT PROCESS
Driven by the desire to deploy more capable robots for
planetary science exploration, NASA identified the need for
establishing an integration framework for its robotic
technologies that are being developed within the Mars
Technology Program. At NASA, we were fortunate to have
the programmatic support and a critical mass in advanced
robotic development to enable us to make a contribution to the
field of robotic software integration.

The development of the CLARAty framework was possible
for three reasons. First and foremost, it was driven by the
need to integrate technologies developed by external and
internal participants of the two competed rounds of MTP’s
NASA Research Announcements over the past six years. This
also opened the door for the integration of technologies from
other NASA programs such as the Intelligent Systems
Program, which was part of the Computing, Information and

3

Communications Technology Program (CICT), and other
internal programs. Second it addressed a programmatic need
to, more cost effectively, share robotic technologies among
centers and reduce the overall costs of robotic software
development and maintenance for NASA’s heterogeneous
research rover fleet. Third, it enabled the validation of
component technologies for consideration into flight projects.
With an infrastructure that enabled the validation of robotic
technologies, legacy algorithms from previous Mars missions
have been integrated into CLARAty for formal validation. As
a consequence, these technologies serve as a baseline to
compare recent advances against. That not only helps
establish a baseline, but it also enables the conduction of
comparison experiments under controlled environments.
CLARAty supported experiments with a high-fidelity rover
and terrain simulator [4] and with research rovers operating in
the JPL outdoor Mars Yard. Examples of legacy algorithms
that have been integrated into CLARAty include the Sojourner
rover pose estimation algorithm [23], the MER vision-based
obstacle avoidance algorithm [24], and the MER visual target
tracking algorithm [25], and the MER visual odometry [26].
Figure 2 shows the multi-center CLARAty development and
its close collaboration with other tasks that support the rover
hardware fleet, the rover and science instruments simulations,
and the science operator interface [27]. Technologies flow in
from multiple external and internal programs and the flow out
to independent formal validation tasks.

From its onset, CLARAty was setup as a collaborative
effort to bring domain experts from leading institutions to
develop a common framework for space robots. That group
formed the core development team that focused on developing
reusable robotic software for supporting the integration of
advanced robotic technologies. Unlike some of the efforts
mentioned in the previous section, CLARAty was grounded
by the need to deploy the framework early to external
technology developers in the program to integrate their
products onto the rover fleet for formal validation. As a
consequence, the overall process comprised the design,
development, integration, deployment, validation, and capture

of lessons learned to feed the next cycle of development. This
iterative development process enabled us to mature the design
by capturing lessons learned from deployed systems.

 The process of developing CLARAty was made easier by
starting from existing implementations of legacy systems for
each of the rovers. We were lucky to have full realization of
software for the Rocky 7, Rocky 8, K9 and FIDO rovers; all
of which had software that was developed by independent
teams. We then did a commonality/variability analysis [30] to
define the common abstract models for these systems. Later,
we adapted these abstract models back to these platforms and
tested them on existing hardware. Our approach can be
summarized as follows:

• Capture requirements from domain experts at multiple
institutions

• Use global perspective across domains (motion, vision,
estimation, navigation)

• Identify recurring patterns and common
infrastructure therein

• Use domain experts to guide design
• Define proper interfaces for each subsystem
• Develop a generic framework to support various

implementations
• Adapt legacy implementations to validate framework
• Encapsulate when re-factoring is not feasible or

affordable
• Develop regression tests where feasible
• Test on multiple robotic platforms and study limitations
• Feed learned experience back into the design
• Review and update to address limitations
After several iterations one hopes to have achieved a truly

reusable infrastructure for that class of robots.
The ultimate goal is to build a robotic software system that

is reusable across robots and that supports different
operational scenarios. As a result the software has to be stable
against hardware variability, flexible enough to accommodate
the requirements of a continuously evolving application field.
The software also has to be easy to understand and maintain.

IV. THE ARCHITECTURE
CLARAty adopts a layered architectural model, with each
layer unified around a different programming paradigm.
CLARAty decomposes robotic software into two layers: a
decision layer and a functional layer. The decision layer uses a
declarative programming paradigm, which has been the focus
of research efforts within the artificial intelligence community.
The functional layer uses a multi-abstraction model based on
procedural programming paradigm, which has been dominant
within the robotics community. These two programming
paradigms are quite different for building robotic intelligence.

The decision layer adopts a declarative programming
paradigm where the programmer explicitly describes the
activities, models, and constraints but does not provide any
program logic (sequences, conditionals, and loops) that
describes the order of execution. The program logic is
automatically generated and updated by a search-engine that

Technology
Tasks

CLARAty

Jet Propulsion Lab

CMU

NASA ARC

U. Minnesota

R&TD, MDS,
DRDF

Competed
Mars Technology
Program

Other NASA Programs

Rover Simulation
ROAMS

Rover Hardware

Flight Focused
Technology Programs

Science Instruments
Simulation

Operator Interface

Legacy Algorithms
Flight Algorithms

NASA Centers
and

Universities
Technology Tasks

NASA Centers
and

Universities
Technology Tasks

NASA Centers
and

Universities
Technology Tasks

NASA Centers
and

Universities
Technology Tasks

Technology
Validation Tasks

Technology
Validation Tasks

Technology
Tasks

Technology
TasksTechnology

Tasks

CLARAty

Jet Propulsion Lab

CMU

NASA ARC

U. Minnesota

R&TD, MDS,
DRDF

Competed
Mars Technology
Program

Other NASA Programs

Rover Simulation
ROAMS

Rover Hardware

Flight Focused
Technology Programs

Science Instruments
Simulation

Operator Interface

Legacy Algorithms
Flight Algorithms

NASA Centers
and

Universities
Technology Tasks

NASA Centers
and

Universities
Technology Tasks

NASA Centers
and

Universities
Technology Tasks

NASA Centers
and

Universities
Technology Tasks

Technology
Validation Tasks

Technology
Validation Tasks

Technology
Tasks

Technology
Tasks

Figure 2: The inflow of technology algorithms from multiple
NASA programs and flight projects and the outflow of algorithms

deployed on research rovers for formal validation

4

examines all constraints and maintains a plan to order
activities without violating these constraints [28].

Conversely, the functional layer adopts a procedural
programming paradigm, which readily provides the program
logic that contains the order of execution using activity
sequencing, conditionals, loops, and concurrent activities. The
execution is only altered through conditionals, exceptions, and
dynamic binding. While declarative programming has larger
flexibility in ordering activities than the procedural
programming, it requires computational resources to generate
the program logic and requires explicit constraints on all
activities.

Figure 3 shows the two-layer architecture with the decision
and functional layers. The functional layer uses a design
based on object models. Abstract models of various
capabilities are defined with interfaces that link the different
components in the system. These models use different
technologies and algorithms to implement the capabilities.
This modular approach enables the evaluation of different
technologies without having to re-architect the entire system.
For example, the generic navigator provides an abstract model
for navigating a rover in rough terrain. Navigation algorithms
with different algorithms have been adapted to CLARAty
including the one that was used on the MER rovers on Mars
[24].

The design of the functional layer is governed by a number
of principles [29] that evolved from the iterative development
process described in the previous section. We highlight some
of these principles below:

1. Separation of the intent from the implementation (the
“what” from the “how”)

2. Generalization and stabilization of interfaces by using
complex data structures

3. Separation of generic runtime models from platforms
for specific ones

4. Exposure of stable behaviors and interfaces while
encapsulating state and runtime models

5. Enabling integration of algorithms and adaptations of
devices at different levels of abstractions

6. Employing a cross-domain analysis to maximize reuse
of data structures and optimize data flow

7. Definition of common policies for cross-cutting themes
such as time, uncertainty, and coordinate
transformations

8. Unification of the mechanism model representation
9. Separation of the mechanism model from the control
10. Separation of logical and physical hierarchies for

devices
Figure 4 illustrates the 5th principle. It shows the abstraction
levels of a locomotion example where access to hardware or
simulation occurs at various levels. At the lowest levels, the
control software interfaces to hardware or simulation using
low-level analog and digital I/O signals. A higher level would
be to interface through a serial bus where information is
exchanged through formatted data packets as opposed to
toggling I/O signals. At an even higher level, the software
interfaces to a motor adaptation that understands motor
commands. Higher levels include an interface to a group of
coordinated motors, a wheeled locomotor, or a general
locomotor. The level at which the interface to hardware or
simulation is made depends on the openness of the hardware
or the level of fidelity of the simulator. For example, access to
a custom-built robot often occurs at lower levels while access
to a commercial-of-the-shelf robot occurs at a higher level
because the manufacturer may only provide an interface to
control the robot's motion and not individual wheels. In this
case, the concept of a motor is hidden in a layer that is
inaccessible to the user. Such a system will have adaptations
at the locomotor level providing only access to the locomotor
interface as opposed to the motor or I/O level interfaces.

V. CHALLENGES
The primary challenge in developing reusable robotic

software is software instability, which results from the
variability in robotic hardware, variability in the operating
environment and variability in the operational tasks. In
addition to technical challenges, developing unified robotic
software has its share of programmatic challenges.

Hardware variability results from (a) differences in robotic

Analog and Digital I/O

Motor Group

Wheeled Locomotor

Rover

Locomotor

Multi-level mobility abstractions

Navigator

Motor

FIDO Rover

ATRV Jr.

ROAMS Simulation

Serial Bus
Software

Abstractions

Hardware / Simulation
Systems

Rocky 7 Rover

Pluto Rover

Analog and Digital I/O

Motor Group

Wheeled Locomotor

Rover

Locomotor

Multi-level mobility abstractions

Navigator

Motor

FIDO Rover

ATRV Jr.

ROAMS Simulation

Serial Bus
Software

Abstractions

Hardware / Simulation
Systems

Rocky 7 Rover

Pluto Rover

Figure 4: Adaptation of devices at different levels of

abstraction

Rover

Acquire ImageGoto Target 1

Swappable Algorithm or
Robot Adaptation

ATRV Jr.
Rocky 7

ROAMS

Functional
Layer

Decision
Layer

Declarative Activity

Functional Abstraction

Rocky 8

Explore Site

Goto Target 3
Deploy

Instrument
Acquire &
Analyze

Navigator
Morphin

Locomotor
R8_Model

Motor
R8_Motor

Pose Estimator
SAPP

Pt Cloud

IMU
ISIS

Target Tracker
Falcon

Camera
1394 Cam

Stereovision
JPLV

Rover

Acquire ImageGoto Target 1

Swappable Algorithm or
Robot Adaptation

ATRV Jr.
Rocky 7

ROAMS

Functional
Layer

Decision
Layer

Declarative Activity

Functional Abstraction

Rocky 8

Explore Site

Goto Target 3
Deploy

Instrument
Acquire &
Analyze

Navigator
Morphin

Locomotor
R8_Model

Motor
R8_Motor

Pose Estimator
SAPP

Pt Cloud

IMU
ISIS

Target Tracker
Falcon

Camera
1394 Cam

Stereovision
JPLV

Figure 3: The overall CLARAty architecture with a declarative-

based decision layer and procedural-based functional layer

5

hardware architectures, (b) differences in the hardware
components used by various systems, (c) differences in sensor
configurations for a given system or application, and (d)
differences in the mechanisms that generate motion in a robot.

To illustrate the extent of the latter, consider the variations
within the class of wheeled rovers shown in Figure 5.
Different mechanisms exhibit different capabilities, which
have major implications on how the robots move and act.
Controlling wheeled robots is very different from controlling
legged platforms. Even among wheeled robots, fully-steerable
(omni-directional) rovers can move laterally (crab) while
partially-steerable (car-like) robots can achieve the same result
only via a parallel parking maneuver Figure 5 (a) to (d)).
Mobile robots with passive suspension conform to the terrain
with no control over their tilt while those with active
suspension have control over their tilt (Fig. 5(e) and (f)).
Robotic manipulators have similar nuances depending on the
number of degrees of freedom they have and their joint
configurations.

In addition to hardware variability, software instability
emanates from (a) software complexity, (b) advanced
algorithm integration, (c) architectural mismatches, (d)
variability of tasks and tools (e.g. operating systems and
software development tools).

Beyond technical challenges, there are non-technical
challenges in developing and sharing a common robotic
framework. First and foremost are the Export Control
regulations that govern different software modules. In this
paper, we described a generic software framework that
enabled us to integrate different technical solutions including
ones chosen for flight missions. While we have demonstrated
software interoperability of these algorithms on real platforms,
access to different implementations may not always be readily
possible. Access is governed by a complex set of policies to
ensure compliance with International Traffic and Arms
Regulations (ITAR) laws. As a result, we had to place
sophisticated mechanisms to control access based on an
individual’s credentials.

In addition to ITAR and Commerce restrictions, there are
Intellectual Property restrictions associated with software
developed by multiple institutions. From that perspective,
CLARAty is divided into two categories: (1) infrastructure
modules that have shared ownership among the centers and is

governed by a single multi-center intellectual property
document, and (2) individual technologies, each with its own
Intellectual Property document.

Beyond such challenges, there are practical challenges of
developing software remotely across institutions. These
include challenges in testing and validating new features
without shared hardware platforms.

Despite these challenges, progress in this field has already
yielded several rewards for multiple institutions. Today
robotic software infrastructure and algorithms are being
successfully shared and validated across half a dozen
institutions. Such sharing enables the distributed teams to
leverage each other’s developments leading to more efficient
development and integration of advanced algorithms. In the
next section, we will describe one such example in some
detail.

VI. RESULTS

The CLARAty framework enabled development and
integration of capabilities from multiple institutions. One
notable example is the single-cycle instrument placement
(SCIP) capability.

Algorithms for SCIP were developed at various institutions
and have been integrated into CLARAty and deployed on both
the Rocky 8 rover at JPL and the K9 rover at NASA Ames.
Figure 6 shows the SCIP capability, where a scientist
designates a target from the science panoramic cameras at a
distance of 10 rover lengths away. With its built-in
autonomous capability, the rover would then drive while
continuously tracking the target using the rover stereo
cameras. While tracking the target, the rover would use its
body cameras to detect and avoid obstacles along the way. As
the rover gets closer to the target, the SCIP algorithm will
switch the tracking of the target from the narrow field-of-view

(a)
Skid Steerable

(no steering wheels)

Front
x

yz

(b)
Partially steerable

Front

x

yz

(c)
Partially steerable

Front
x

yz

(d)
Fully-steerable

x

Front

yz

(e)
Passive Suspension (complies to terrain)

(f)
Active Suspension (actuated links)

(a)
Skid Steerable

(no steering wheels)

Front
x

yz

(b)
Partially steerable

Front

x

yz

Front

x

yz

(c)
Partially steerable

Front
x

yz

Front
x

yz

(d)
Fully-steerable

x

Front

yz

Front

yz

(e)
Passive Suspension (complies to terrain)

(f)
Active Suspension (actuated links)

Figure 6: Different mechanisms for wheeled robots

TargetTarget

Figure 5: Rocky 8 executing single-cycle instrument placement

6

(FOV) pancams to the wider FOV navigation cameras
(navcams) that are mounted on the same articulated mast. The
rover will continue tracking the target after it has been
handed-off from one camera pair to another. As the rover
comes up to the target rock, another hand-off operation from
the navcams to the body hazard cameras (hazcams) is carried
out. This hand-off operation is more challenging because the
body cameras has three times wider FOV compared to the
navcams. They also have a significantly different view point
of the target. During its final steps, the rover positions the
rover base, continues to track the target from the hazard
cameras and places the rover such that the target is within the
arm’s reach. The surface normal of the target is computed
during this final approach phase to determine the rover’s final
placement. Once in its final position, the arm is deployed and
the end effector motion is sensed as the rover touches the
designated target. The science instrument mounted at the end
of the arm acquires the data and the rover simulates a
downlink to Earth.

Such capabilities require the integration of a number of
technologies such as: motion control and coordination of the
mobility platform and the arm, stereo vision, visual target
tracking, target hand-off, pose estimation, path planning,
navigation and obstacle avoidance.

For each component, a number of different technologies
were explored. For example, different techniques were tested
for the visual target tracking included image-based tracking,
shape-based tracking, as well as hybrid methods. We also
explored different technologies for pose estimation, which
included wheel odometry methods and ones that combined
wheel and visual odometry. Multiple navigation algorithms
have been used. The component technologies were provided
by JPL, NASA Ames, Carnegie Mellon and University of
Minnesota.

VII. CONCLUSION
There are many challenges to developing reusable robotic
software both technical and non-technical. However, the
scope of software development that is necessary to build
intelligent software exceeds the resources that are available
for most projects today. As a result, developing an
infrastructure for sharing and leveraging each other’s software
proved reasonably effective within our small team of a dozen
institutions. CLARAty is on the verge of makings its first
public release and lesson learned from that experience will be
published in a future publication.

VIII. ACKNOWLEDGEMENTS
The author would like to acknowledge the contributions of
current and former members of the CLARAty team. In
particular: Richard Volpe, Dan Clouse, Antonio Diaz-
Calderon, Tara Estlin, Daniel Gaines, Won Kim, Richard
Madison, Michael McHenry, Hari Nayar, Richard Petras,
Mihail Pivtoraiko, Gregg Rabideau, I-Hsiang Shu, from the
Jet Propulsion Laboratory; Clayton Kunz, Lorenzo Fluckeiger,
Randy Sargent, Hans Utz, and Anne Wright from NASA
Ames Research Center; Reid Simmons, David Apfelbaum,
Kam Lasater, Nik Melchoir, and Chris Urmson from Carnegie

Mellon; and Stergios Roumeliotis, Anastasios Mourikis, and
Nikolas Trawny from the University of Minnesota. The author
would like to acknowledge the numerous contributors from
universities and NASA centers who have provided algorithms
to CLARAty. The author would also like to thank NASA's
Mars Technology Program for their vision and support: David
Lavery, Samad Hayati, Paul Schenker, Richard Volpe, and
Gabriel Udomkesmalee. The work described in this chapter
was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, NASA Ames Research Center,
Carnegie Mellon, and University of Minnesota under a
contract to the National Aeronautics and Space
Administration.

REFERENCES
[1] D. Brugali (ed.) “Software Engineering for Experimental Robotics”,

Springer Tracts on Advanced Robotics, March 2007.
[2] I.A. Nesnas, R. Simmons, D. Gaines, C. Kunz, A. Diaz-Calderon, T.

Estlin, R. Madison, J. Guineau, M. McHenry, I. Shu, and D. Apfelbaum,
"CLARAty: Challenges and Steps Toward Reusable Robotic Software,"
International Journal of Advanced Robotic Systems, Vol. 3, No. 1, pp.
023-030, 2006.

[3] R. Volpe, I.A.D. Nesnas, T. Estlin, D. Mutz, R. Petras, H. Das, "The
CLARAty Architecture for Robotic Autonomy." Proceedings of the
2001 IEEE Aerospace Conference, Big Sky Montana, March 10-17
2001.

[4] A. Jain and et.al., Recent developments in the roams planetary rover
simulation environment, IEEE Aerospace Conference (Big Sky,
Montana), 2004.

[5] R. Volpe, "Rover Technology Development and Mission Infusion
Beyond MER," 2005 IEEE Aerospace Conference, Big Sky, Montana,
March 6-11, 2005.

[6] J. Albus, H. McCain, and R. Lumia, NASA/NBS standard reference
model for telerobot control system architecture (NASREM), NBS
Technical Note 1235, National Bureau of Standards, Gaithersburg,
Maryland, July 1987.

[7] R. Volpe, J. Balaram, T. Ohm, and R. Ivlev, "The Rocky 7 Mars Rover
Prototype," IEEE / RSJ International Conference on Intelligent Robots
and Systems (IROS), Osaka, Japan, November 4-8, 1996.

[8] A. Bradley, S. Dubowsky, R. Quinn & N. Marzwell. Enabling
Interoperable Space Robots with the Joint Technical Architecture for
Robotic Systems (JTARS), International Symposium on Artificial
Intelligence, Robotics and Automation in Space (I-SAIRAS), Munich,
Germany, September 2005.

[9] Component software - beyond object-oriented programming, Addison-
Wesley / ACM Press, 2002.

[10] D.B. Stewart and P. Khosla. The Chimera Methodology: Designing
Dynamically Reconfigurable and Reusable Real-Time Software using
Port-Based Objects. International Journal of Software Engineering and
Knowledge Engineering, Vol. 6, No. 2, June, 1996, pp. 249-277.

[11] G. Pardo-Castellote S. Schneider, V. Chen and H. Wang. Controlshell: A
software architecture for complex electromechanical systems. Int’l
Journal of Robotics Research, 17(4), April 1988

[12] FIPA (2005). Foundation for Intelligent Physical Agents,
http://www.fipa.org/

[13] R.A. Brooks (1991) Intelligence Without Reason, Proceedings of the
12th Int. Joint Conference on Artificial Intelligence, Sidney 1991

[14] R. Alami, R. Chautila, S. Fleury, M. Ghallab, and F. Ingrand, An
architecture for autonomy, The International Journal of Robotics
Research 17 (1998), no. 4.

[15] C. Kapoor, D. Tesar, D. (1998). A Reusable Operational Software
Architecture for Advanced Robotics, CSIMIFToMM Symposium on
theory and Practice of Robotsand Manipulators, Paris, France.

[16] OROCOS (2005) http://www.orocos.org/
[17] JAUS (2005). Joint Architecture for Unmanned Systems Ref.

Architecture, Ver. 3.0, http://www. jauswg.org/.
[18] Gerkey, B.; Vaughan, B.; & Howard, A. (2003). The Player/Stage

Project: Tools for Multi-Robot and Distributed Sensor Systems,

7

International Conference on Advanced Robotics, pages 317-323,
Portugal.

[19] Robotics, Engineering Task Force http://www.robo-etf.org.
[20] IEEE ICRA2005 Workshop on Software Development and Integration

in robotics (SDIR2005), Barcelona, Spain April, 18 2005
http://robotics.unibg.it/tcprog/sdir2005/

[21] IEEE ICRA2007 Workshop on Software Development and Integration
in robotics (SDIR2007), Rome, Italy April, 14 2007
http://robotics.unibg.it/tcprog/sdir2005/

[22] Robotics Domain Special Interest Group,
http://www.omg.org/news/releases/pr2005/02-17-05.htm.

[23] A. Mishkin, J. Morrison, T. Nguyen, H. Stone, B. Cooper, & B. Wilcox,
(1998) Experiences with Operations and Autonomy of the Mars
Pathfinder Microrover, IEEE Aerospace Conference, Colorado.

[24] M. W. Maimone, P. C. Leger, J. J. Biesiadecki, "Overview of the Mars
Exploration Rovers' Autonomous Mobility and Vision Capabilities,"
IEEE International Conference on Robotics and Automation (ICRA),
Space Robotics Workshop, Roma, Italy, 14 April 2007.

[25] W. S. Kim, A. I. Ansar, R.D. Steele, K.S. Ali, I.A. Nesnas, "Rover-
Based Visual Target Tracking Validation and Mission Infusion," AIAA
Conf., Space 2005, Aug. 2005.

[26] M.W. Maimone, Y. Cheng, L. Matthies, “Two Years of Visual
Odometry on the Mars Exploration Rovers,” Journal of Field Robotics,
Volume 24 number 3, special issue on Space Robotics, March 2007, 169
- 186.

[27] J. S. Norris, M. W. Powell, J. M. Fox, K. J. Rabe, I. Shu, "Science
Operations Interfaces for Mars Surface Exploration," 2005 IEEE
Conference on Systems, Man, and Cybernetics, October 15-17, Big
Island, HI., October 15, 2005.

[28] T. Estlin, D. Gaines, C. Chouinard, F. Fisher, R. Castano, M. Judd, R.
Anderson, and , I. Nesnas, "Enabling Autonomous Rover Science
Through Dynamic Planning and Scheduling," Proceedings of the 2005
IEEE Aerospace Conference, Big Sky, Montanna, March 2005.

[29] I. Nesnas, The CLARAty Project: Coping with Hardware and Software
Heterogeneity, In Software Engineering for Experimental Robotics, D.
Brugali (Ed.) , Springer STAR 2007.

[30] J. Coplien, D. Hoffman, and D. Weiss. Commonality and variability in
software engineering. IEEE Software, 15(6), 1998.

