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PROJECT Very Rough Terrain Trajectory Generation and Motion Planning for Planetary Rovers 
TASK Rough Terrain Trajectory Generation 

DOCUMENT TYPE Trajectory Generator Schedule Document 
AUTHOR Thomas M. Howard 

REVISION DATE September 25th, 2006 
 
PROJECT OBJECTIVE: A trajectory generation class shall be implemented to find trajectories for arbitrary vehicle 
models and arbitrary terrain which meet boundary position, heading, curvature, and velocity constraints.  
Trajectory generation problems of this type require numerical solution methods, because no closed-form 
solution is currently known.  Therefore, this trajectory generation class will implement a numerical optimization 
method to minimize the boundary state error by adjusting the freedoms (parameterized controls) until 
convergence is met.   
 
PROJECT SCHEDULE 

Trajectory Generator 
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 
CY 

2004 CY 2005 CY 2006 

Visualization           
Test Environment          
Numerical Differentiation          
Rough Terrain Compensation          
Specific Rover Model (Rocky 7)          
Stage 1 CLARAty Integration          
Canonical Maneuvers          
Predictive Tracking Control          
CLARAty Integration Requirements and Concept 
Design        

Trajectory Generator Software 
Rewrite          

Trajectory Generator Software 
Testing          

Stage 2 CLARAty Integration          
Trajectory Generator Detailed Design, User Guide, and Test 
Documents      

 
PROJECT SCHEDULE DETAILS 

Visualization (Q1): Develop visualization for trajectory generator system development. 
Test Environment (Q2): Evaluate and/or develop simulation test environment used for trajectory generator 
system development. 
Numerical Differentiation (Q2): Experiment with numerical linearization techniques used in the trajectory 
generator optimization 
Rough Terrain Compensation (Q3): Develop the rough terrain trajectory generation algorithm.  This requires 
generation of a suspension model and generalization of the forward simulation to three-dimensions.   
Specific Rover Model (Rocky 7) (Q4): Develop a specific vehicle model applicable to the Mars Technology 
Program and test with the developed rough terrain trajectory generation technique. 
Stage 1 CLARAty Integration (Q4): Integrate the first version of the trajectory generation software into CLARAty 
and perform field experiments to test the API and software robustness. 
Canonical Maneuvers (Q5): Develop the capacity to generate a variety of maneuvers for vehicle mobility 
systems including forward and reverse corner-steering (Rocky 7), turn-in-place, skid-steering and all-wheel 
steering (Rocky 8).   
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Predictive Tracking Control (Q6): Develop a path tracking algorithm using the trajectory generator that 
predicatively compensates for terrain geometry, vehicle dynamics, and mobility system limitations.  
CLARAty Integration Requirements and Concept Design (Q6):  Develop and deliver the CLARAty integration 
requirements and concept design documents.   
Trajectory Generator Software Rewrite (Q7):  Rewrite the trajectory generator design and software for 
performance and robustness. 
Trajectory Generator Software Testing (Q8):  Test the rewritten trajectory generator software by measuring 
performance, convergence, memory requirements, etc…. 
Stage 2 CLARAty Integration (Q9): Integration the revised trajectory generator software into CLARAty and 
perform field experiments to validate the design.   
Trajectory Generatro Detailed Design, User Guide, and Test Documents (Q9): Develop and Deliver the CLARAty 
integration detailed design, user guide, and test documents. 
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 PROJECT Very Rough Terrain Trajectory Generation and Motion Planning for Planetary Rovers 
TASK Rough Terrain Trajectory Generation 

DOCUMENT TYPE Trajectory Generator Requirements Document 
AUTHOR Thomas M. Howard 

REVISION DATE September 25th, 2006 
 
PROJECT OBJECTIVE: A trajectory generation class shall be implemented to find trajectories for arbitrary vehicle 
models and arbitrary terrain which meet boundary position, heading, curvature, and velocity constraints.  
Trajectory generation problems of this type require numerical solution methods, because no closed-form 
solution is currently known.  Therefore, this trajectory generation class will implement a numerical optimization 
method to minimize the boundary state error by adjusting the freedoms (parameterized controls) until 
convergence is met.   
 
PROJECT REQUIREMENTS 

FUNCTIONAL 
REQUIREMENTS 

• The trajectory generation algorithm shall generate a trajectory (parameterized control 
and path, represented as a sequence of vehicle states) given a pair of boundary 
state constraints, vehicle model, and vehicle controls parameterization.  (R-1) 

• The trajectory generator shall have an anytime trajectory generation mode for real-
time operation of the algorithm. (R-2) 

PERFORMANCE 
REQUIREMENTS 

• The trajectory generator shall exhibit global convergence on flat terrain assuming the 
motion is feasible.  (R-3) 

• The trajectory generation algorithm shall exhibit 1% accuracy in position, heading, 
and curvature state constraints 99% of the time on average on rough terrain using the 
developed Rocky 8 Vehicle Model and the provided Generic Vehicle Model. (R-4) 

• The trajectory generation algorithm shall exhibit average runtimes of less than 100 
milliseconds in the situations described in requirement R-4.  (R-5) 

• The trajectory generation algorithm shall not have a memory footprint more than ten 
megabytes. (R-6) 

• The trajectory generation algorithm shall not have a required initialization time more 
than one second.  (R-7) 

INTERFACE REQUIREMENTS • The trajectory generator shall have an interface for trajectory generator that 
generates a trajectory (parameterized controls and path) given the parameterization 
of the vehicle controls and the initial and terminal boundary states. (R-8) 

• The trajectory generator shall have an interface to an external vehicle model class for 
the modeling of the control dynamics, wheel/terrain interaction, vehicle dynamics, 
and suspension. (R-9) 

• The trajectory generator shall have an interface to an external vehicle controls class 
for the representations of the parameterized body-frame vehicle controls. (R-10) 

• The trajectory generator’s vehicle model shall have an interface to an elevation map 
to allow for quasi-static modeling of the suspension.  (R-11) 

• The trajectory generator shall have an interface to a vehicle state class for the 
initialization of the forward simulation and representation of the system’s state 
constraints.  (R-12) 

RELIABILITY REQUIREMENTS • The trajectory generator shall have reasonableness checks in the system to detect 
implausible boundary state constraints. (R-13) 

• The trajectory generator shall have reasonableness checks in the system to detect 
implausible parameterized control representations.  (R-14) 

• The trajectory generator shall have reasonableness checks in the system to detect 
implausible vehicle model representations.  (R-15) 

• The trajectory generator shall have reasonableness checks in the system to detect 
algorithm non-convergence and divergence.  (R-16) 

• The trajectory generator shall have runtime checks in the system to detect 
overrunning the time limit of the algorithm.  (R-17) 
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 PROJECT Very Rough Terrain Trajectory Generation and Motion Planning for Planetary Rovers 
TASK Rough Terrain Trajectory Generation 

DOCUMENT TYPE Trajectory Generator Concept Design Document 
AUTHOR Thomas M. Howard 

REVISION DATE September 25th, 2006 
 
INTRODUCTION:  The trajectory generation algorithm can 
be decomposed into three basic functions: trajectory 
generation (numerical optimization), motion prediction 
(numerical integration), and vehicle modeling (vehicle 
simulation).  The algorithm shall be designed so that the 
trajectory generation and the motion prediction remain 
vehicle independent, allowing the vehicle model to be 
easily swapped in and out for different applications 
(Figure 1).  An overview of different aspects of this 
method will be covered in the concept design.  Greater 
detail and examples of applications of the algorithm can 
be found in [1][2][3][4][5]. 

Trajectory Generation (Numerical Optimization):  The 
numerical optimization step represents the highest level of 
the trajectory generation algorithm, where the difference 
between the target terminal state and the simulation 
terminal state is minimized by modifying the shape of the controls.  In order to gain efficiency in the numerical 
optimization, the controls (u(p,t)) shall be parameterized 
in a manner which nearly represents all feasible 
motions.  The controls shall be parameterized in either 
linear and angular velocities or linear velocity and 
curvature and be functions of time or curvature as a 
function of arc length.  A correction in the 
parameterized controls is computed using Newton’s 
method, which requires a numerical estimate of the 
Jacobian of the system.  Since the derivative of the 
differential equation which governs the system cannot 
be found in closed form, an estimate of the Jacobian shall be found by linearizing the system by each freedom 
in the parameterized control.  The trajectory generation optimization will loop until the residual between the 
terminal states reaches an acceptable level or other termination conditions (divergence, max time, or max 
iterations) is observed.   
The numerical method applied is Newton’s method, where the Jacobian of the solution to the equations of 
motion is inverted to find a correction to the parameters in the system needed to minimize the constraint error 
(Δxf(p)), which we define for the moment to be the difference in the simulated terminal state  and the terminal 
boundary constraints: 
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If the Jacobian of the constraints is non-square (when the constraint vector and the parameter vector are not 
of equal length), a pseudo-inverse can be applied to produce the least squares or least norm solution.   
Since the partial derivatives of the integral of the equations of motion cannot generally be found analytically, 
[Howard and Kelly 05] estimates must be found numerically.  Forward (eq. 15) or central difference (eq. 16) 
linearizations of the forward equations of motion can be used to estimate these partial derivatives.  The 
algorithm derives its vehicle independence from the numerical estimation of all of the partial derivatives. 

Figure 1: Trajectory Generator System Architecture. The 
trajectory generation algorithm can be conceptualized as a three-level 
hierarchy.  The highest level is a numerical optimization that 
minimizes the constraint error by adjusting the free parameters in the 
controls. The next level, motion prediction, is simply the numerical 
integration of the equations of motion. The lowest level, the vehicle 
model, simulates the vehicle’s dynamics, motion, and suspension. 
This architecture is formalized and implemented to permit different 
vehicle models to interface with the same underlying algorithm. 
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Motion Prediction (Numerical Integration):  The process of numerically integrating the differential equations that 
govern the motion of the vehicle is essentially one of simulation (Figure 1).  Motion simulations are required to 
generate the trajectory corresponding to the parameterized controls and consequently the Jacobian and the 
Hessian of the Hamiltonian (because they are found by numerical linearizations of forward solutions).  The 
process is broken into three distinct steps: control dynamics, modeling of the wheel-terrain interaction, and 
motion simulation.  

The first step, modeling of the control dynamics, is very important for accurately simulating real-world systems.  
Real systems have motor acceleration and torque limits, latency, and joint limits that must be modeled in order 
to produce an accurate simulation of how the vehicle will respond to its commands. The control dynamics 
modeling portion of the motion prediction stage simply determines the vehicle response to the body-frame 
linear and angular velocity controls: 

( ) ( )t,,t, uxfux dynamicscontrol=&  (5) 

The control dynamics portion of the model determines the forces that the vehicle will exert on the environment, 
and therefore the resulting response forces from the environment.  It is here where models of wheel slip, sliding, 
and the actions of external forces on the system are applied.   

The last portion of the motion prediction is the actual motion simulation, which determines the change in 
vehicle pose (r|world, o|world) over a small time step (Δt): 

( ) ( ) ( ) tt,,ttt Δ+=Δ+ uxxxx &  (6) 

Since ground vehicles generally cannot control their roll, pitch, or elevation rates (they are functions of the 
interaction between the environment and the suspension), new estimates of these states are computed by the 
suspension model at the end of each motion prediction step.   

Vehicle Model (Vehicle Simulation):  From a coding perspective, the vehicle model portion of the trajectory 
generation algorithm is an instance of the abstract vehicle model class that determines how the robot will 
respond to the commanded body-frame linear and angular velocity controls, change its position and 
orientation, and interact with its environment (Figure 1). The vehicle model is generally broken down into four 
elements: a dynamics model, a wheel/terrain interaction model, a motion model, and a suspension model. 
Vehicle Dynamics Models 
Vehicle dynamics models simulate the response of the body-frame vehicle commands to the torques on 
and/or velocities of the wheels.  By modeling the response to the parameterized controls, the solutions found 
are dynamically feasible.   
A few elements of vehicle dynamics models are rate limits, joint limits, and latency.  Rate limits represent 
constraints on how fast actuators can turn.  Modeling these effects can account for drive wheels that move 
slower than requested or steering servos that lag behind their desired orientation.  By contract, joint limits bound 
entire regions of control space that contain infeasible motions.  An example of such infeasible motions is the 
impossible turn-in-place maneuver in automobiles.  The front wheels can never reach the steer angles required 
for this motion.  Accounting for latency in the system is essential for generating correct trajectories when the 
vehicle state can change dramatically over the scale of the latency.   
These types of constraints can be handled in the trajectory generator by using the response to the input 
controls in the integration of the kinetic motion model instead of the controls themselves. Hard limits can be 
imposed on steering angles and models of actuator dynamics can simulate delays in the motor controller.   
The imposition of such joint and rate limits in the vehicle model requires a method for computing wheel 
direction and velocities given some body-frame linear and angular velocity.  For determining the mapping 
from body-frame linear and angular velocity to wheel velocities, suspension articulation rates can be 
temporarily neglected to simplify the computations.  For such a rigid body, the velocity of any point on the 
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vehicle can be determined from the linear and angular velocity of the body frame. Specifically at the location 
of a wheel: 

wheelbodybodywheel rωvv ×+=
 (7) 

In the linear and angular velocity vectors, only the controllable velocities (vx,vy,ωz) need to be considered.  The 
vector r|wheel is the displacement from the body frame to wheel contact point.  The wheel speed and direction 
can then be determined from the computed wheel velocity vector.  
Wheel/Terrain Interaction Models 
By predicting the wheel/terrain interaction in the planning stage of the overall autonomy system, rather than 
accounting for it in the execution stage, more dynamically feasible vehicle motion can be generated.  
Traversing high wheel slip environments is a major challenge for current planetary robotic systems, for example 
and the present algorithm promises to help compensate for such slip to the degree that it can be predicted by 
the specialized perception algorithms that are appearing.    
Vehicle Motion Models 
The vehicle motion model maps body frame linear and angular velocities to world frame position and 
orientation rates.  A body-frame coordinate system is defined with the positive x-axis pointing forward, the 
positive y-axis pointing to the right, and the positive z-axis pointing down.  The mapping of linear velocities from 
the body-frame (v|body) to world frame (v|world) is completed by rotating the body-frame x, y, and z axes by the 
Euler angles roll (�), pitch (�), and yaw (�) respectively: 
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This relationship can be inverted to determine the body-frame velocity vectors in terms of the global position 
rates: 
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The mapping between the Euler angle rates and the body-frame angular velocities (��body) can also be found 
by transforming the individual Euler rotation rates from their intermediate frames to the robot-fixed frame: 
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Just as with global position rates and body-frame linear velocities, this relationship can be inverted to determine 
the Euler rates in terms of the body-frame angular velocities: 
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Equations (9) and (13) form the basis of the time-based velocity kinematics.  The rate of change of global 
position and Euler angles can be determined given a set of controllable body-frame linear and angular 
velocities: 
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Vehicle Suspension Models 
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Vehicle suspension modeling is the problem of properly determining the attitude and elevation of a vehicle 
given its current state.  This is an embedded optimization problem because it is often highly underdetermined.  
We solve this problem by conceptually allowing the vehicle to float in altitude and attitude, and articulate in 
suspension, while minimizing the residual between the wheels and the terrain elevations under (or above) them. 
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 PROJECT Very Rough Terrain Trajectory Generation and Motion Planning for Planetary Rovers 
TASK Rough Terrain Trajectory Generation 

DOCUMENT TYPE Trajectory Generator Detailed Design Document 
AUTHOR Thomas M. Howard 

REVISION DATE September 25th, 2006 
 
DETAILED DESIGN LOCATION: The detailed design of the document is provided through the commented code 
and the corresponding Doxygen documentation.   
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 PROJECT Very Rough Terrain Trajectory Generation and Motion Planning for Planetary Rovers 
TASK Rough Terrain Trajectory Generation 

DOCUMENT TYPE Trajectory Generator API Specification and User Guide Document 
AUTHOR Thomas M. Howard 

REVISION DATE September 25th, 2006 
 
INTRODUCTION: This section details the trajectory generator API and details how the class is used.   
 
REQUIRED FILES: 
libTrajectoryGenerator.a  // the compiled trajectory generation library 
TrajectoryGenerator.h  // the trajectory generation class header file 
VehicleState.h   // vehicle state definition class header file 
VehicleModel.h   // vehicle model abstract base class header file 
VehicleControls.h  // vehicle controls class header file 
Path.h    // path class header file 
HeuristicTable.h   // heuristic table class 
GenericVehicleModel.h  // generic vehicle model class (inherited from  
//     VehicleModel.h) 
31x31x31x11LookupTable.txt // 4-D heuristic lookup table (loaded at trajectory  
//     generation initialization) 
 
TRAJECTORY GENERATOR API SPECIFICATION 
Functions: 
void TrajectoryGenerator(VehicleModel *RobotModel):  Class constructor which loads a specific vehicle model. 
void SetVehicleModel(VehicleModel *RobotModel):  Function which changes the vehicle model internal to the 
trajectory generator to the specified vehicle model. 
bool SolveTrajectory(const VehicleState &initialState, const VehicleState &terminalState):  Function which 
generates a trajectory between a pair of boundary states (initialState and terminalState).   
VehicleControls GetVehicleControls(void):  Function which returns the current values of the trajectory 
generators vehicle controls. 
void SetVehicleControls(const VehicleControls &controls):  Function which changes the controls internal to the 
trajectory generator to the specified controls. 
Path GetPath(void):  Function which returns the current Path generated by the trajectory generator. 
void SetXPrecision(long double xPrecision): Function which sets the required accuracy of the terminal x position 
in meters.  The default value is 0.01. 
void SetYPrecision(long double yPrecision): Function which sets the required accuracy of the terminal y position 
in meters.  The default value is 0.01. 
void SetYawPrecision(long double yawPrecision): Function which sets the required accuracy of the terminal 
yaw orientation in radians.  The default value is 0.01. 
void SetKPrecision(long double kPrecision): Function which sets the required accuracy of the terminal curvature 
in radians/meters.  The default value is 0.01. 
void SetVPrecision(long double vPrecision): Function which sets the required accuracy of the terminal velocity 
in meters/second.  The default value is 0.01. 
void SetMaxIterations(int maxIterations): Function which sets the maximum number of iterations (corrections) 
before the routine returns false.  The default value is 20. 
void SetConvergenceRate(long double convergenceRate):  Function which sets the rate of the forward step to 
take in the numerical optimization.  The default value is 1.00 (100% of the forward step).   
void SetTimeStep(cost long double &timeStep):  Function which sets the dt (in seconds) for the forward solution 
simulation.  The default value is 0.001.   
void SetMaximumNumberSteps(const in &maximumNumberSteps):  Function which sets the maximum number 
of steps to take in the forward solution simulation.  The default value is 10000.  Increasing this number may 
improve the accuracy of the forward simulation but increase runtime and vice versa.   
Program Variables: 
bool setHeuristic:  Boolean which determines whether or not to load the heuristics.  This should only be off in a 
table generation program.  The default value is true. 
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bool exportPath:  Boolean which determines whether or not to generate and store a sampled path at the end 
of a successfully solved trajectory.  The default value is true. 
Bool displayDebug:  Boolean which determines whether or not to print out debugging printouts.  The default 
value is true.   
 
VEHICLE MODEL API:  There are current three generic functions that specify a simple model of vehicle dynamics.  
Other function can be added by the user, but these three interface with the code in the forward solution 
section of trajectory generator 
void ResetVehicleModelToInitialState(void): This function is called at the beginning of each forward solution to 
reset the vehicle model to its initial state. 
void DynamicsResponse(VehicleState &currentState):  This function passes in the current state and modifies it 
based on the response of a vehicle model (which the user adds).  The inputted currentState contains the 
commanded linear velocity and curvature and the modified currentState is used which contains the response 
linear velocity and curvature.  The generic vehicle model class assumes a unity response, where the response 
linear velocity and curvature are the commanded linear velocity and curvature. 
void EvalSuspension(VehicleState &currentState):  This function is used to determine the elevation, body roll, 
and pitch given some position and body yaw.  This is again filled in by the user.  The generic vehicle model class 
assumes that the elevation, body roll, and pitch are all equal to zero.   
 
Example Program: 
#include “TrajectoryGenerator.h” 
#include “VehicleState.h” 
#include “Path.h” 
#include “VehicleControls.h” 
#include “GenericVehicleModel.h” 
 
using namespace TrajectoryGeneratorNamespace; 
 
int main(){ 
 VehicleModel *RobotModel; 
RobotModel = new GenericVehicleModel();    
VehicleState initialState(0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0);   
VehicleState terminalState(1.0,1.0,0.0,0.0,0.0,0.785,0.0,1.0,0.0);  
TrajectoryGenerator TrajGen(RobotModel);    
if(TrajGen.SolveTrajectory(initialState,terminalState)){ 
VehicleControls controls = TrajGen.GetVehicleControls();  
Path path = TrajGen.GetPath();     
} 
return 0; 
} 
 
Example Program Description:  Running the trajectory generator code relatively straightforward.  First, include 
the necessary header files and link against the proper library (libTrajectoryGenerator.a).  A VehicleModel 
defines the vehicle dynamics and suspension characteristics and is defined by the user using an instance of the 
abstract class VehicleModel.  A GenericVehicleModel is included which assumes no suspension model (roll = 
pitch = z = 0.0) and perfect vehicle dynamics (vout = vin).  Two VehicleState classes are instantiated which 
define the initial state of the vehicle (shown below as initialState) and the desired terminal state of the vehicle 
(shown below as terminalState).  An instance of the TrajectoryGenerator class is generated using the class 
constructor which takes the current vehicle model as the argument. The standard class constructor, which 
takes no argument, uses the GenericVehicleModel instance of the VehicleModel class.  Then to solve the 
trajectory generation problem, SolveTrajectory(initialState, terminalState) is called which returns true if the 
solution meets the required precision metrics.  The controls and paths can be gathered from the trajectory 
generator by using the GetVehicleControls and GetPath functions respectively.   
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 PROJECT Very Rough Terrain Trajectory Generation and Motion Planning for Planetary Rovers 
TASK Rough Terrain Trajectory Generation 

DOCUMENT TYPE Trajectory Generator Test Plan Document 
AUTHOR Thomas M. Howard 

REVISION DATE September 25th, 2006 
 
INTRODUCTION:  The trajectory generator shall be tested to determine if the functional, performance, interface, 
and reliability requirements have been met.  This section will detail the test suite used to certify the algorithm 
and trace which requirements each test validates. 
 

REGRESSION 
TESTS 

• Test the algorithm with a large number of queries on flat terrain and compare solved trajectories 
to stored solutions.  The controls parameterization and vehicle model shall be the default control 
parameterization (5th order polynomial in curvature, constant unity velocity, constant zero 
direction) and the default vehicle model (generic_vehicle_model) respectively. 

o (Functional Requirement R-1) Test the trajectory generator interface and report % 
convergence. 

o (Performance Requirement R-3) Test convergence and report % convergence. 
o (Interface Requirement R-8) If the trajectory generator properly generates 

trajectories between boundary states and returns the correct controls and vehicle 
path, then it is considered successful. 

• Test the algorithm with a large number of queries on rough terrain (supplied) with the supplied 
Rocky 8 vehicle model with a large number of queries and compare solved trajectories to 
stored solutions.  The controls parameterization shall be the default (5th order polynomial in 
curvature, constant unity velocity, constant zero direction).  The tests would ideally be done on 
hardware comparable to Rocky 8 (for performance metrics). 

o (Functional Requirement R-1) Test the trajectory generator interface and report % 
convergence. 

o (Performance Requirement R-4) Test convergence on rough terrain and report % 
convergence.  A % convergence above 99% on the supplied world is considered a 
success. 

o (Performance Requirement R-5) Measure and store average runtime of rough 
terrain trajectory generation tests.  Average runtimes of less than 100 milliseconds 
shall be considered successful. 

o (Performance Requirement R-6) Measure and store memory footprint.  A memory 
footprint of less than 20 megabytes is considered successful. 

o (Performance Requirement R-7) Measure and store initialization time.  An 
initialization time of less than one second is considered a success. 

o (Interface Requirement R-9) If the trajectory generator successfully loads and uses 
the supplied Rocky 8 vehicle model, it is considered a success. 

o (Interface Requirement R-11) If the vehicle model can properly invert the suspension 
model to determine its attitude and elevation on the terrain, it is properly 
communicating with the terrain representation in the vehicle model and is 
considered a success. 

• Test the algorithm with a large number of queries on rough terrain (supplied) with the supplied 
Rocky 8 vehicle model with specific dynamics enabled (delays, slip, etc…) and compare 
trajectories to stored solutions to measure algorithm performance and convergence. 

o (Interface Requirement R-12) If the vehicle model can properly predict vehicle 
dynamics as are described in the supplied vehicle model and compensate for 
these effects, it can properly communicate with the vehicle dynamics portion of the 
vehicle model and therefore is considered a successful test. 

INTERFACE 
TESTS 

• Test the algorithm by changing the vehicle controls parameterization multiple times and make 
sure that the mode has properly changed. 

o (Interface Requirement R-10) If the trajectory generator properly switches between 
different parameterization controls representations, it is considered a successful test. 

• Test the algorithm by changing the vehicle model multiple times and make sure that the vehicle 
model has properly changed. 
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o (Interface Requirement R-9) If the trajectory generator properly switches between 
different vehicle models, it is considered a successful test. 

ANYTIME 
ALGORITHM  

TESTS 

• Test the algorithm with a small maximum algorithm time (50 milliseconds) to test if the program 
can properly supply a near-optimal trajectory in the “anytime” version of the algorithm. 

o (Functional Requirement R-2) Ensure that the algorithm can provide a near-optimal 
solution based on a limited runtime, effectively limiting the maximum number of 
optimization steps.  If the trajectory generator can properly provide a reasonable 
trajectory with state constraint error less than the initial state constraint error, it is 
considered a successful test.   

o (Reliability Requirment R-17) If the trajectory generator properly reports that the 
maximum time limit has been exceeded, then it is considered a successful test. 

RELIABILITY 
TESTS 

• Provide the trajectory generator with unreasonable (NaN, inf, etc…) state constraints to tests for 
proper error handling. 

o (Reliability Requirement R-13) If the trajectory generator exits and reports an 
implausible state constraint then it is considered a successful test. 

• Provide the trajectory generator with an improper control parameterization to test for proper 
error handling. 

o (Reliability Requirement R-14) If the trajectory generator exits and reports an 
implausible control parameterization then it is considered a successful test. 

• Provide the trajectory generator with an improper vehicle model (bad suspension model, 
control dynamics model, etc…) to test for proper error handling. 

o (Reliability Reqruiement R-15) If the trajectory generator exits and reports an 
implausible vehicle model then it is considered a successful test. 

• Provide the trajectory generator with an infeasible trajectory generation problem to detect 
non-convergence or divergence of the algorithm (exceeding maximum # of iterations) 

o (Reliaiblity Requriement R-16) If the trajectory generator exits and reports an 
divergence if the Jacobian becomes singular or if the maximum number of 
iterations has been exceeded (non-convergence) then it is considered a successful 
test. 
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 PROJECT Very Rough Terrain Trajectory Generation and Motion Planning for Planetary Rovers 
TASK Rough Terrain Trajectory Generation 

DOCUMENT TYPE Trajectory Generator Test Results Document 
AUTHOR Thomas M. Howard 

REVISION DATE August 31st, 2007 
 
INTRODUCTION:  This section states that the rough terrain trajectory generator has successfully passed the 
provided test program and tracks all of the software requirements.  The output from the successfully passed 
tests can be found in the Surface_Parameterized_Trajectory_Generator module and should be used to perform 
regression test to modifications of the algorithm. 
 
Test ID Description Result Test Date 

R1 (Functional Requirement R-1) Test the trajectory generator interface and 
report % convergence. 

PASSED AUGUST 2007 

R2 (Performance Requirement R-3) Test convergence and report % 
convergence.   

PASSED AUGUST 2007 

R3 (Interface Requirement R-8) If the trajectory generator properly generates 
trajectories between boundary states and returns the correct controls and 
vehicle path, then it is considered successful.   

PASSED AUGUST 2007 

R4 (Functional Requirement R-1) Test the trajectory generator interface and 
report % convergence.   

PASSED AUGUST 2007 

R5 (Performance Requirement R-4) Test convergence on rough terrain and 
report % convergence.  A % convergence above 99% on the supplied world 
is considered a success.   

PASSED AUGUST 2007 

R6 (Performance Requirement R-5) Measure and store average runtime of 
rough terrain trajectory generation tests.  Average runtimes of less than 100 
milliseconds shall be considered successful.   

PASSED AUGUST 2007 

R7 (Performance Requirement R-6) Measure and store memory footprint.  A 
memory footprint of less than 20 megabytes is considered successful.   

PASSED AUGUST 2007 

R8 (Performance Requirement R-7) Measure and store initialization time.  An 
initialization time of less than one second is considered a success.   

PASSED AUGUST 2007 

R9 (Interface Requirement R-9) If the trajectory generator successfully loads 
and uses the supplied Rocky 8 vehicle model, it is considered a success.   

PASSED AUGUST 2007 

R10 (Interface Requirement R-11) If the vehicle model can properly invert the 
suspension model to determine its attitude and elevation on the terrain, it is 
properly communicating with the terrain representation in the vehicle 
model and is considered a success.   

PASSED AUGUST 2007 

R11 (Interface Requirement R-12) If the vehicle model can properly predict 
vehicle dynamics as are described in the supplied vehicle model and 
compensate for these effects, it can properly communicate with the 
vehicle dynamics portion of the vehicle model and therefore is considered 
a successful test.   

PASSED AUGUST 2007 

R12 (Interface Requirement R-10) If the trajectory generator properly switches 
between different parameterization controls representations, it is considered 
a successful test.   

PASSED AUGUST 2007 

R13 (Interface Requirement R-9) If the trajectory generator properly switches 
between different vehicle models, it is considered a successful test.   

PASSED AUGUST 2007 

R14 (Functional Requirement R-2) Ensure that the algorithm can provide a near- PASSED AUGUST 2007 
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optimal solution based on a limited runtime, effectively limiting the 
maximum number of optimization steps.  If the trajectory generator can 
properly provide a reasonable trajectory with state constraint error less than 
the initial state constraint error, it is considered a successful test.     

R15 (Reliability Requirment R-17) If the trajectory generator properly reports that 
the maximum time limit has been exceeded, then it is considered a 
successful test.   

PASSED AUGUST 2007 

R16 (Reliability Requirement R-13) If the trajectory generator exits and reports an 
implausible state constraint then it is considered a successful test.   

PASSED AUGUST 2007 

R17 (Reliability Requirement R-14) If the trajectory generator exits and reports an 
implausible control parameterization then it is considered a successful test.   

PASSED AUGUST 2007 

R18 (Reliability Reqruiement R-15) If the trajectory generator exits and reports an 
implausible vehicle model then it is considered a successful test.   

PASSED AUGUST 2007 

R19 (Reliaiblity Requriement R-16) If the trajectory generator exits and reports an 
divergence if the Jacobian becomes singular or if the maximum number of 
iterations has been exceeded (non-convergence) then it is considered a 
successful test.   

PASSED AUGUST 2007 

 


